BITSTREAM-BASED ATTACKS AGAINST
RECONFIGURABLE HARDWARE

DISSERTATION

zur Erlangung des Grades eines Doktor-Ingenieurs
der Fakultit fiir Elektrotechnik und Informationstechnik
an der Ruhr-Universitiat Bochum

by Pawel Swierczynski
Bochum, July 2017

Copyright © 2017 by Pawel Swierczynski. All rights reserved.
Printed in Germany.

To my beloved family.

Thesis Advisor:

Secondary Referee:

Thesis submitted:
Thesis defense:
Last revision:

Prof. Dr.-Ing. Christof Paar
Ruhr-Universitdt Bochum, Germany
Prof. Russell Tessier

Pawel Swierczynski
Place of birth: Tychy, Poland
Author’s contact information:
pawel.swierczynski@rub.de
WWwW.emsec.rub.de

University of Massachusetts Amherst, MA, USA

July 18, 2017
September 29, 2017
July 09, 2018

Abstract

Over the last three decades, Field Programmable Gate Arrays (FPGAs) have developed into
sophisticated re-programmable hardware devices and have become a central component in nu-
merous information and communication systems. In 2010, more than four billion FPGA devices
were shipped world-wide to various customers. SRAM-based FPGAs are widely used in safety-
critical applications including aerospace, health, military equipment, automotive, computer
networks, data centers, and many other industries.

Many of these applications are security-sensitive and need cryptographic operations such
as random number generation, key establishment, digital signatures as well as encryption to
ensure security services such as integrity, authenticity, and confidentiality. Therefore, we see an
increased use of FPGAs for security-relevant tasks or in avionic systems such as satellites, the
Boeing 787 Dreamliner, and the NASA Mars Rover.

As part of the revelations by Edward Snowden, it became public knowledge that the US
intelligence agency, e.g., the National Security Agency (NSA) intercepts communication equip-
ment during shipment in order to install malicious backdoors. Such firmware manipulations
were for example carried out on Cisco routers enabling the NSA to entirely monitor targeted
data networks. To achieve this, parts of the firmware were first reverse-engineered and then
replaced. The manipulation of micro-controllers and software in general, e.g., the x86 or ARM
architecture, occurs daily and its methods are well studied and advanced. In contrast, no public
reports describing compromises of cryptographic hardware configurations of FPGAs — relying
on manipulating bitstreams — have been available. A bitstream file, the encoded circuit of an
FPGA, contains a description of how to configure all internal hardware elements during initial
power-up. It can describe any conceivable hardware circuit that can execute arbitrary function-
ality. Given an adversary who obtains unauthorized access to a third-party bitstream describing
a cryptographic circuit, e.g., through eavesdropping the data configuration bus or reading out
the external non-volatile memory chip, the research question arises whether and specifically how
a bitstream manipulation can lead to key leakage or Trojan insertion. Since the bitstream file
format is proprietary and official extraction tools are unavailable, at first glance manipulating a
cryptographic hardware configuration seems to be practically infeasible. This is one of various
reasons why no meaningful manipulations have been presented to date.

This hurdle is also present even if the entire human-readable representation of a hardware
configuration is available. A reason for this is that an adversary needs to reverse-engineer
complex hardware structures that can consist of hundreds of thousands of interconnections,
look-up tables, and flip-flops, appearing as unstructured mass of gates.

In general, to protect against Intellectual Property (IP) cloning and potential bitstream ma-
nipulations, the market leaders Xilinx and Altera offer a bitstream encryption feature that is
supposed to ensure confidentiality and integrity. A problem with those schemes is that the bit-
stream encryption key of most deployed FPGAs can be disclosed for example by means of side-
channel attacks. A leaked bitstream encryption key leads to the complete loss of confidentiality

and integrity making IP cloning a straightforward task and malicious bitstream manipulations
a practical threat. In particular the latter issue is a (mostly) unattended research topic.

To close this research gap, this thesis demonstrates that non-invasive and targeted bitstream
manipulations are indeed feasible and a powerful tool to compromise the security of crypto-
graphic implementations. In this work, the first successful manipulations of third-party bit-
streams are presented, which render the security of cryptographic block ciphers useless. More
precisely, the detection and manipulation methods described in this thesis allow for either ex-
tracting secret keys or weakening the cryptographic strength of the AES block cipher. To
highlight the practical relevance and applicability of bitstream manipulation attacks, the first
real-world FPGA Trojan insertion is presented by targeting a commercially available embedded
device through tampering with its AES module in the revealed bitstream. The device-under-
attack is a FIPS-140-2 level 2 certified high-security USB flash drive from Kingston.

Targeted bitstream manipulation attacks, particularly those relying on prior detection of rel-
evant cryptographic primitives, already offer a high success rate, but are not guaranteed to
succeed. To further demonstrate the feasibility of a more generic AES key recovery technique,
we present a novel and efficient fault injection approach on third-party bitstreams, which suc-
ceeds even if the targeted bitstreams are encrypted. This technique provides a higher success
rate for recovering the cryptographic key of various AES IP cores, requiring no prior localiza-
tion of the AES module within the bitstream. The attack works regardless of the underlying
hardware architecture. Consequently, it can avoid the use of expensive laser setups or the
reverse-engineering of the underlying hardware design, which may be as complex as reverse-
engineering an Application Specific Integrated Circuit (ASIC).

In summary, in this dissertation we evaluate to what extent non-invasive bitstream manipu-
lations can compromise system security relying on SRAM-based FPGAs.

Keywords.

Cryptography, bitstream encryption, Altera Stratix III, Spartan 6, Xilinx Virtex 5, FPGA secu-
rity, reconfigurable hardware, bitstream manipulation, reverse-engineering, hardware Trojans,
key recovery, fault injection, AES, IP protection, Kingston, real-world attack, countermeasures.

viii

Kurzfassung

Bitstreambasierte Angriffe gegen rekonfigurierbare Hardware

In den letzten drei Jahrzehnten haben sich Field Programmable Gate Arrays (FPGAs) zu fort-
geschrittenen re-programmierbaren Hardwarebausteinen entwickelt und wurden zu elementaren
Komponenten fiir zahlreiche Informations- und Kommunikationssysteme. Im Jahr 2010 wurden
weltweit mehr als vier Milliarden solcher Systeme ausgeliefert. SRAM-basierte FPGAs werden
weitgehend in Anwendungen wie der Luft- und Raumfahrt, dem Gesundheitswesen, dem Mi-
litdrbereich, der Automobilindustrie und in Computernetzwerken sowie Datenzentren genutzt.

Viele dieser Anwendungen sind sicherheitskritisch und benétigen deshalb kryptographische
Operationen beispielsweise zur Generierung von Zufallszahlen, zum Schliisselaustausch, zur Ge-
nerierung von digitalen Signaturen oder zur Verschliisselung von Daten. Dies ermdéglicht die
Sicherheitsanforderungen wie Integritdt, Authentizitét, und Vertraulichkeit zu erfiillen. Deshalb
sehen wir in der Praxis einen erhohten Einsatz von FPGAs, die sicherheitsrelevante Aufgaben
iibernehmen und in Avionik Systemen wie Satelliten, der Boeing 787 (Dreamliner) oder dem
Mars Rover der NASA genutzt werden.

Ein Teil der Enthiillungen durch Edward Snowden hat gezeigt, dass der US-amerikanische
Geheimdienst National Security Agency (NSA) verschiedene Ubertragungsgerite wahrend der
Warensendung abfingt, um Hintertiiren einzubauen. Beispielsweise fithrten Firmwaremanipu-
lationen an Cisco-Routern zu einer uneingeschréinkten Uberwachung gezielter Datennetzwerke
durch die NSA. Konkret wurde die Funktionsweise der Firmware rekonstruiert und anschlie-
Bend Teile ersetzt. Wahrend Softwaremanipulationen in weit verbreiteten Architekturen wie
x86 oder ARM bereits gut erforscht sind, gab es bislang keine Dokumentationen, welche An-
griffe auf kryptographische Hardwarekonfigurationen von FPGAs bzw. die zugehorige Bitstre-
amdatei beschreiben. Eine Bitstreamdatei, der kodierte Schaltkreis eines FPGAs, enthélt eine
Beschreibung der Konfiguration der internen Hardwareelemente, die beim Start geladen wird.
Es kann jeden denkbaren digitalen Hardwareschaltkreis beschreiben, der eine beliebige Funk-
tionalitat ausfiihren kann. Angenommen ein Angreifer kommt in Besitz eines Bitstreams der
einen kryptographischen Schaltkreis beschreibt, zum Beispiel durch Abhéren des Konfigurati-
onsdatenbusses oder durch Auslesen des externen nicht-fliichtigen Speichers. Dann stellt sich die
Forschungsfrage, ob und speziell wie eine Manipulation dieses Bitstreams zur Schliisselextraktion
oder dem Einfiigen eines Trojaners fithren kann. Da das Dateiformat des Bitstreams allerdings
proprietér ist und keine offiziellen Extraktionswerkzeuge zur Verfiigung gestellt werden, scheint
die Manipulation von kryptographischen Hardwarekonfigurationen in der Praxis auf den ersten
Blick schwierig zu sein. Dies ist einer der Griinde, weshalb bisher keine praktischen Angriffe auf
Hardwarekonfigurationen vorgestellt wurden.

Diese Schwierigkeit stellt sich gleichermaflen, falls eine menschenlesbare Reprisentation gege-
ben ist. Ein Grund hierfiir ist, dass ein Angreifer komplexe Hardwarestrukturen rekonstruieren
muss, welche aus hunderttausenden elektrischen Leitungen, Look-up-Tabellen und Flip-Flops
bestehen konnen, die als unstrukturiertes Konstrukt von Gattern erscheinen.

Um sich im Allgemeinem gegen das Klonen von Bitstreams bzw. vor Manipulationen zu
schiitzen, bieten die Marktfiithrer Xilinx und Altera einen Verschliisselungsmechanismus fiir Bit-
streams an, der Vertraulichkeit und Integritét sichern soll. Ein Problem dieser Gegenmafinahmen
ist jedoch, dass der kryptographische Schliissel beispielsweise durch Seitenkanal-Angriffe extra-
hiert werden kann. Die Bestimmung des geheimen Schliissels von der Bitstreamverschliisselung
fithrt zum kompletten Verlust der Vertraulichkeit und Integritéit. Dies ermdglicht ein Kopieren
des Bitstreams und lédsst bosartige Manipulationen zur realen Bedrohung werden. Insbesondere
die bosartige Manipulation von Bitstreams ist ein kaum untersuchtes Forschungsfeld.

Um diese Forschungsliicke zu schlielen, zeigt diese Dissertation auf, dass nicht-invasive und
gezielte Bitstreammanipulationen praktisch durchfiihrbar sind und ein méchtiges Werkzeug dar-
stellen um die Sicherheit von kryptographischen Implementierungen zu brechen. In dieser Ar-
beit werden somit die ersten erfolgreichen Manipulationen von Bitstreams gezeigt, welche die
Sicherheitseigenschaften von Blockchiffren wirkungslos machen. Konkret beschreibt diese Arbeit
Methoden zur Detektion und Manipulation, die es entweder erlauben den geheimen Schliissel zu
extrahieren oder erzwingen, dass die kryptographische Stérke der AES Blockchiffre geschwécht
wird. Um die praktische Relevanz und Machbarkeit von Bitstreammanipulationsangriffen zu
bestétigen, priasentieren wir den ersten injizierten FPGA Trojaner. Dazu wird das AES-Modul
im Bitstream eines kommerziell verfiigharen eingebetteten Gerétes manipuliert. Dabei handelt
es sich um einen FIPS-140-2 Level 2 zertifizierten Hochsicherheits-USB-Stick der Firma Kings-
ton.

Gezielte Bitstreammanipulationen, insbesondere diejenigen, welche eine vorherige Detektion
von relevanten kryptographischen Primitiven erfordern, weisen eine bereits sehr gute Erfolgsquo-
te auf, haben bei speziellen AES Implementierungen allerdings keine Erfolgsgarantie. Um eine
weitere generische Methode zur Schliisselextraktion bzgl. AES aufzuzeigen, prisentieren wir eine
neuartige und effiziente Vorgehensweise, die erfolgreich Fehlerinjektionsangriffe — auch auf ver-
schliisselte Bitstreams — durchfithrt. Diese Technik fiihrt zu einer noch héheren Erfolgsrate bzgl.
der Schliisselextraktion diverser AES Implementierungen, unabhéngig einer vorherigen Lokalisa-
tion des AES im Bitstream. Der Angriff funktioniert zudem vollig unabhéngig von der zugrunde
liegenden Hardwarearchitektur. Folglich kann der Gebrauch von teuren Laserequipments oder
der Rekonstruktionsprozess beziiglich der zugrunde liegenden Hardware-Konfiguration vermie-
den werden, welche dhnlich komplex wie die Rekonstruktion eines Application Specific Integra-
ted Circuits (ASICs) sein kann.

Zusammenfassend kann gesagt werden, dass diese Arbeit auswertet zu welchem Grad nicht-
invasive Bitstreammanipulationen die Systemsicherheit von SRAM-basierten FPGAs aushebeln
koénnen.

Schlagworte.

Kryptographie, Bitstreamverschliisselung, Altera Stratix I1I, Spartan 6, Xilinx Virtex 5, FPGA-
Sicherheit, Rekonfigurierbare Hardware, Bitstream-Manipulation, Reverse-engineering, Hardware-
Trojaner, Schlisselextraktion, Fehlerinjektion, AES, IP-Schutz, Kingston, Praktische Angriffe,
Gegenmafinahmen.

Acknowledgments

Finally! It is done! I'm happy that I can write a couple of thankful words. I actually consider
myself as a lucky person who had the opportunity to be part of the Chair of Embedded Security
(EMSEC), which is lead by my supervisor Christof Paar. At this point, I especially would
like to thank Christof for his great support and positive attitude towards me and our various
research projects. I really enjoyed to work with Christof, who is not only a very great teacher
(without any doubts all people knowing him will confirm this without hesitation), but also a
great motivator and very supportive person. Thank you for approximately 5 great years!

I'm also very thankful to Irmgard Kiithn and Horst Edelmann for helping me with all the
administrative and technical issues, which made my work life much easier. Thanks!

It must be fairly said that the results of this thesis would not have been possible without
collaboration with many of my (external) co-authors. Hence, a huge thanks to all of you!

One person on my list regarding “thanking people separately in the acknowledgments” is
Georg Becker, who also greatly guided me to stay on the right track regarding my research. It
was particularly fun for me to work with Georg on the BiFI project (not to be confused with
BiFi). Huge thanks!

Next, I would like to thank one of my best friends Ilya Ozerov, who tremendously helped
me during my studies. Thanks for the various discussions, explanations, learning sessions, for
showing me Peppone, and for Wiesbaden. Also, thanks for the various cinema visits, jogging
sessions at the Kemnader sea, as well as Rust, DayZ, Portal 1/2 gaming sessions, which was all
fun stuff except maybe some of the first or longer lasting jogging sessions ;-)!

Now, I would like to particularly thank Marc Fyrbiak and Philipp Koppe with whom I had
a great time at the University of Massachusetts and during our research collaboration. It was
kind of funny to observe Philipp’s style of letting “coffee bounce” while driving a car. I still do
not know how it could not affect Marc’s caffeine circulation, but I do not want to get off the
point: thank you guys for the great work and funny moments during our America visits and
the common time at our chair!

At this point, I also would like to thank Professor Russell Tessier, who welcomed me as a
guest at the University of Massachusetts and for being my secondary referee.

The next person on my list is Amir Moradi. I'm happy for the many times he has helped
me in solving technical issues, for sharing his (side-channel) knowledge with me and for the
nice support during my Master thesis. Also, thanks for the various Hattingen invitations! I'm
a bit sorry for my “difficult-to-pronounce and difficult-to-write” surname, but luckily at least
Thunderbird solves the latter issue by offering an autocomplete feature :).

Many thanks go to David Oswald, who greatly supervised me prior to my time as a researcher
at EMSEC and for convincing me to do a security analysis on the crypto accelerators of Java
cards as a Bachelor thesis, which later on resulted into a student assistant job and this somewhat
resulted in doing my Master thesis at EMSEC. This in return was one contributing factor for
joining Christof’s group. Hence, thank you!

Also, T want to thank Falk Schellenberg, who has helped me with some of my car issues and
who was driving me home for a couple of times when I was in need. Thanks to Max Hoffmann for
organizing all the social events and thanks to Tobias Schneider for the various funny discussions
about research and UbiCrypt. Another thanks goes to Pascal Sasdrich for sharing his ECC and
tiny AES cores that were helpful for one of my research projects.

Acknowledgements

I also particularly want to thank Steffen Becker, Maik Ender, and Shahram Rasoolzadeh (in
alphabetic order) for the additional time they have spent with me to practice my defense and
for their valuable feedback. I should not forget to mention the many interesting chats or playing
the game "Magnet-werfen* ;-)!

Some thanks are also owed to Ingo von Maurich and Thomas Péppelmann for sharing their
office with me for the first couple of my working months and for explaining all the organisational
stuff.

Finally, I want to thank all who proof-read parts of this thesis (again in alphabetic order):
Steffen Becker, Erik Boss, Liam Collins, Maik Ender, Christian Kison, Tobias Schneider, Ilya
Ozerov, and Felix Wegener. I really appreciate your help! Thanks guys!

Xii

Table of Contents

Imprint e e v
Abstract e e v
Kurzfassung e e viii
Acknowledgements L L e xi

I Preliminaries 1
1 Introduction 3
1.1 Motivation e 3
1.2 Related Work e 4
1.2.1 Bitstream Encryption Scheme Security 4

1.2.2 Bitstream Reverse-engineering and Manipulation 6

1.2.3 Malicious Bitstream Manipulations 8

1.3 Contribution and Organization of this Thesis 8

2 Technical Background 11
2.1 Xilinx FPGAs e 11
2.1.1 Hardware Resources 12

2.1.2 Design Flow for Bitstream Generation 14

2.2 System and Adversary Model L 15
2.2.1 Practical Hurdles 16

2.3 AES Basics e e 17

Il FPGA Security 19
3 Bitstream Encryption 21
3.1 Motivation e e e e 21
3.2 The Design Security Feature of Stratix Il FPGAs 22
3.3 Required Reverse-Engineering Steps for Stratix IIIl FPGAs 23
3.4 Required Side-Channel Steps for Stratix IIl FPGAs 24
3.5 Conclusion 27

4 Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware 29
4.1 Motivation e e 29

4.2 Attack Idea - Substitution of S-boxes of Block Ciphers 31

Table of Contents

Xiv

4.3 Bitstream Encoding of Xilinxk FPGAs 32
4.3.1 Extracting the LUT Encoding from a Bitstream 32
4.3.2 Extracting the BRAM Encoding from a Bitstream 35

4.4 Exploiting Boolean Functions in FPGA Bitstreams 36
4.4.1 Detection of DES S-boxes 37
4.4.2 Results of DES S-box Detection 38
4.4.3 Manipulating DES S-boxes oo 39
4.4.4 Detection of AES S-boxes 43
4.4.5 Results of AES S-box Detection. 47
4.4.6 Manipulating AES S-boxes o oo 48

4.5 Mitigating S-box Substitution Attacks 53
4.5.1 Built-In Self-Test 53
4.5.2 Decomposition of Larger Circuits into Smaller Ones 53
4.5.3 Proposal for Partial Self-configuration Countermeasure Scheme 54

4.6 Conclusion e e 59

Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption

Device 61
5.1 Motivation L 61
5.2 Proceeding of Inserting an FPGA Trojan 62
5.2.1 Attack Scenario: Interdiction 62
5.3 Real-World Target Device 63
5.3.1 Initial Steps and Authentication Process 63
5.3.2 Physical Attack — Revealing the FPGA Bitstream 64
5.3.3 Overview and Component Details 65
5.3.4 Unlinking FPGA Trojan from the Authentication Process 66
5.3.5 Modifying Bitstream vs. Replacing Entire Bitstream 67
5.3.6 Manipulation — Master vs. Slave 68
5.4 Building the FPGA Trojan 68
5.4.1 Analysis of the Extracted Bitstream 68
5.4.2 Modifying the Third-Party FPGA Design 69
5.5 ARM Code Modification 70
5.5.1 Utilized Self-tests e 70
5.5.2 Disabling Self-tests to Modify ARM Code and FPGA Bitstream 70
5.5.3 Separating Key Derivation and FPGA AES IP-Core 71
5.5.4 Recording XTS-AES Parameters 72
5.6 XTS-AES Manipulation and Plaintext Recovery 72
5.6.1 Manipulation of AES-XTS 73
5.7 Summary of Security Problems o Lo 74
5.8 Conclusion 75

Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based

FPGAs and AES 77
6.1 Related Work 78
6.2 Motivation and Contribution e 78

Table of Contents

6.3 Background 79
6.4 Attack Idea 80
6.4.1 Manipulations Rules oo 80

6.4.2 Key Recovery e 81

6.5 Experimental Setup and Results 83
6.5.1 Results without Enabled Bitstream Encryption Scheme 84

6.5.2 Experimental Setup with Enabled Bitstream Encryption Scheme 86

6.5.3 Setup and Results with Enabled Bitstream Encryption 88

6.5.4 Testing the Bitstream Encryption Vulnerability of Xilinx FPGAs 89

6.5.5 Discussion on Altera Bitstream Encryption Scheme 89

6.6 Analysis L 91
6.6.1 Evaluation of Observed Faults 91

6.7 Discussions and Countermeasures v v e e 96
6.7.1 Impact on Other Fault Attack Types. 97

6.8 Conclusion e 98

Il Conclusion 99
7 Conclusion 101
7.1 Impact of Bitstream Encryption Vulnerabilities 101
7.2 Impact of Bitstream Manipulations 0oL 102
7.3 Future Directions 103

IV Appendix 105
Bibliography 107
List of Abbreviations 113
List of Figures 115
List of Tables 119
List of Algorithms 121
About the Author 123
Publications and Academic Activities 124

XV

Part |

Preliminaries

Chapter 1
Introduction

In this chapter, the motivation and related work for the research conducted in this
thesis are portrayed. Finally, we outline the structure and highlight the contribution
of this thesis.

Contents of this Chapter

1.1 Motivation L e e e 3
1.2 Related Work 4
1.3 Contribution and Organization of this Thesis 8

1.1 Motivation

A Static Random Access Memory (SRAM)-based FPGA is an Integrated Circuit (IC) offering a
large resource of programmable hardware elements that are distributed over a two-dimensional
array. In contrast to an ASIC, these structures are not hard-wired and can be programmed after
chip fabrication. Hence, they have the ability to (remotely) update their hardware functionality
at any time.

A so-called bitstream, which is used to configure the desired functionality into the volatile
SRAM-cells of the FPGA, encodes a low-level description of a previously designed high-level
hardware layout. With the help of the proprietary FPGA vendor’s toolchain, a designed high-
level hardware layout is mapped and routed to the actual hardware resources of the FPGA. The
corresponding description is stored in a netlist file, which we refer to as hardware configuration.
In a final step, a hardware configuration is encoded and stored as a binary bitstream file.

As FPGAs are increasingly used to execute cryptographic algorithms, it is particularly impor-
tant to evaluate, whether the manipulation of hardware configurations, describing cryptographic
circuits, could lead to a security breach.

One practical hurdle for demonstrating such a security breach is due to the complexity of a
hardware configuration. Even if the entire hardware configuration would be given to an attacker,
which is usually not the case, it is time-consuming to analyze and (maliciously) manipulate the
circuit, since it appears as an unstructured mass of gates to the attacker.

Conducting meaningful manipulations is even harder if an attacker only possesses the binary
bitstream file since this file format is proprietary. This establishes an additional barrier for an at-
tacker because the hardware configuration also appears obscured and cannot be algorithmically
analyzed unless the file format can be (partially) interpreted. There are no official extraction

Chapter 1. Introduction

tools allowing to interpret a bitstream, analyze the corresponding hardware configuration, or
to modify it.

Due to the volatile nature of an SRAM-based FPGA, the bitstream file is usually stored in
a dedicated non-volatile memory chip like a flash or EEPROM. Commonly, it is integrated on
the same Printed Circuit Board (PCB) that contains the FPGA. Both hardware components
are connected through a configuration data bus. Once the PCB is powered, the bitstream is
configured consecutively into the SRAM-cells of an FPGA by following a configuration protocol.
This way, all combinatorial as well as sequential hardware elements are initialized to form the
final circuit. Note that the cells have to be reconfigured after each power down.

On one hand, such a configuration mechanism can allow fixing critical security vulnerabilities
through updating a flawed hardware design. On the other hand it represents a security risk.
In practice, the major issue is IP theft. This is due to the fact that it is a straightforward
task for an adversary to either eavesdrop on the configuration data bus during power-up or to
directly read out the plain bitstream from the non-volatile memory, and thus it is easy to clone
a competitor’s entire hardware design.

While cloning a bitstream is a relatively easy task, a targeted and meaningful manipulation
of an AES core within a third-party bitstream, potentially resulting in a security breach, has
never been demonstrated to date. Despite more than 20 years of research related to FPGAs
and cryptography, relatively little is known about bitstream manipulations with the goal of
key extraction or breaking cryptographic primitives. We argue that this is mostly due to its
proprietary file format and the underlying complexity of the built hardware circuity. From the
view of a security engineer, it is important to study bitstream manipulation attacks to evaluate
whether cryptographic algorithms can be executed securely on this type of devices.

To thwart any IP theft issues or bitstream manipulation attempts, the main two FPGA
vendors, Xilinx and Altera, introduced a countermeasure which is called bitstream encryption
or design security. In the next section, we provide an overview of research that examined the
security of these schemes.

1.2 Related Work

In this section, we present state-of-the-art bitstream encryption scheme attacks, provide in-
formation about bitstream file format reverse-engineering approaches, and introduce bitstream
manipulation strategies.

1.2.1 Bitstream Encryption Scheme Security

Any attempt of tampering a bitstream could be easily mitigated by an encrypted and authenti-
cated bitstream. In practice, this is usually realized as follows. In an initial step, the customer
defines a secret bitstream encryption key k with the help of the software-based toolchain of
the FPGA vendor. Then, the bitstream encryption key k is programmed into the dedicated
hardware decryption module of the FPGA. During this initialization step, the bitstream is en-
crypted with a symmetric cipher such as AES and can therefore be stored securely in the flash
chip. This mitigates the possibility of an attacker analyzing its contents in case the flash chip is
read out or the configuration data is wiretapped. The overall goal is to ensure that an attacker

1.2. Related Work

will neither gain any information about the bitstream file nor that he can clone the design into
another blank FPGA.

Once set up, during each power-up of the system the previously encrypted bitstream is trans-
ferred to the dedicated hardware decryption module of the FPGA, then decrypted, verified, and
finally configured. In an ideal world, the secret bitstream encryption key k& cannot be recovered
as it is not accessible by an attacker. As indicated before, this could prevent any bitstream
manipulation attempt and mitigate reverse-engineering of an FPGA design.

Nevertheless, the schemes of both major vendors, namely Xilinx and Altera, have demon-
strated security weaknesses allowing for leakage of the secret bitstream encryption key k by
utilizing side-channel analysis. This countermeasure can be broken in approximately one day,
cf. the works of Moradi et al. [MBKP11, MKP12, MOPS13, MS16]. In these attacks, the
power consumption can be exploited during the decryption process to reveal the secret bit-
stream encryption key k. Subsequently, the encrypted bitstream can be decrypted, maliciously
manipulated to change its hardware configuration, and finally be re-encrypted so it can be
processed by the FPGA again, bypassing the bitstream authentication as well as bitstream in-
tegrity. Table 1.1 shows all FPGA devices whose bitstream encryption schemes are known to be
vulnerable to side-channel attacks. As can be seen, Xilinx Virtex 2 up to Xilinx Virtex 6, the
entire Xilinx 7 series, Xilinx Spartan 6 FPGAs, Altera Stratix II and Altera Stratix III FPGAs
are affected. Hence, the bitstream encryption schemes of all Xilinx FPGAs except for the latest
and expensive high-security devices (Kintex and Virtex Ultrascale [MS16]) can be practically
attacked.

Device Family Introduced Bitstream Enc./Auth. Known Vulnerability No integrity/authenticity

Xilinx Spartan 3 2005 not supported - V4
Xilinx Spartan 6 2009 AES-256/HMAC [MS16] Vv
Xilinx Virtex II 2001 3-DES/no [MBKP11] 4
Xilinx Virtex 4 2005 AES-256/no [MKP12] Vv
Xilinx Virtex 5 2006 AES-256 /no [MKP12]) 4
Xilinx Virtex 6 2009 AES-256/HMAC [MS16]) i
Xilinx 7 series 2010 AES-256/HMAC [MS16]) 4
Xilinx UltraSCALE 2014 AES-256 GCM/RSA-2048 no research reports so far unclear
Xilinx UltraSCALE™ 2015 AES-256 GCM/RSA-4096 no research reports so far unclear
Altera Stratix II 2004 AES-128 [MOPS13] 4
Altera Stratix IIT 2006 AES-256 [SMOP14] Vv
Altera Stratix IV 2008 AES-256 no research reports so far unclear
Altera Stratix V 2010 AES-256 no research reports so far unclear
Altera Stratix 10 2013 AES-256, SHA-256, PUF no research reports so far unclear
Microsemi FPGAs - AES-256, SHA-256 no research reports so far unclear

Table 1.1: List of Xilinx FPGA families and Altera FPGA devices, which are vulnerable to side-
channel attacks. No side-channel attacks for the UltraSCALE and UltraSCALE™
family have been reported so far. Note that the Xilinx 7 series includes the Kintex,
Artix, and Virtex families

Another important reason why malicious bitstream manipulations need to be explored is
the fact that most currently-deployed FPGAs do not even support bitstream encryption or
authentication.

According to Altera’s annual business report from 2014 [Alt15] the peak production of an
FPGA is roughly 6 years after introduction and the FPGAs are sold for more than 15 years.
According to the annual reports of both Xilinx and Altera, around 50% of the revenue actually

Chapter 1. Introduction

comes from older FPGA families which, as indicated before, do not have bitstream authenti-
cation [Alt15, Xill5]. It seems likely that it will take some time until FPGAs with bitstream
authentication are widely used in practice. Hence, if one can demonstrate successful bitstream
manipulations, this also shows that those attacks are applicable to a large share of FPGAs
currently used in practical applications.

Note that whenever side-channel attacks or similar ones, e.g., relying on laser fault injections,
fail to extract the secret key of a cryptographic hardware configuration, bitstream manipulations
are a legitimate alternative attack vector to compromise the system security in a non-invasive
manner and hence should be considered a practical threat. In order to successfully conduct
targeted bitstream manipulations, e.g., leading to a Trojan, we expect that a (partial) reverse-
engineering of the bitstream file format is required. Therefore, in the next section we provide
an overview of works that have attempted to reveal the bitstream encoding.

1.2.2 Bitstream Reverse-engineering and Manipulation

The proprietary bitstream format obfuscates the encoding of an FPGA configuration and the
FPGA vendors do only barely or incompletely support the parsing of bitstream files to a human-
readable hardware configuration. Therefore, there are only limited capabilities for analyzing
or manipulating a given third-party hardware configuration. For this reason, the reverse-
engineering and partial manipulation of the proprietary bitstream structure of FPGAs has
been the focus of several works, which we outline in the following.

Xilinx FPGAs

In 1999, Guccione et al. [GLS11] introduced a tool called JBits. It operates on bitstreams gen-
erated by Xilinx tools. This tool allows the user to replace hardware configurations for Look-Up
Tables (LUTSs), Flip Flops (FFs), and routing. It can modify existing circuits of Xilinx XC4000
and Virtex families, but a limitation of this tool (and for many other tools) is that it supports
only a small subset of Xilinx FPGAs. In 2002, two tools (JPG [RS02] and PARBITS [HLKO02])
were presented enabling partial bitstream generation, e.g., by using JBITS or intermediate file
formats. Unfortunately, the support for JBITS is discontinued and publicly unavailable.

In 2006, it was demonstrated by Ziener et al. [ZAT06] that reverse-engineering the encoding
of the entire look-up table configuration of an FPGA bitstream is feasible for Virtex II FPGAs.
Later, in 2008, Note and Rannaud [NRO8] showed how to reverse-engineer the bitstream file
format by cross-correlating data from the binary bitstream file and its corresponding netlist,
which was used to generate the bitstream. Their work is meant to be seen as proof-of-concept
that bitstream reverse-engineering is feasible. In particular, their tool is able to extract a textual
configuration from the bitstreams that are used to configure Xilinx Virtex 2, Virtex 4 LXT and
Virtex 5 LXT FPGAs. The authors claimed that reverse-engineering the bitstream file format
is an easy task without providing any success rate of actually translating bitstreams back to a
netlist.

Later, in 2010, Lavin et al. [LPL*10] introduced an open-source Java-based tool called Rapid-
Smith. 1t is a library for low-level manipulations of partially placed-and-routed hardware con-
figurations requiring intermediate file formats in case given circuits need to be modified. Rapid-
Smith can also parse, manipulate, and export bitstreams for Xilinx Virtex 4, Virtex 5 and
Virtex 6 families, but it seemingly cannot parse the configuration of frame internals such as

1.2. Related Work

LUTs, Block Random Access Memories (BRAMs) blocks, or FF contents. An open-source tool
with a similar feature set called Torc was published in 2011 by Steiner et al. [SWST11]. It sup-
ports a broader class of Xilinx FPGAs (Virtex family, Spartan 3E, Spartan 6, and Spartan 6L)
and is based on C++.

Another contribution in this field was presented by Benz et al. [BSH12] in 2012. The
authors proposed a toolchain, called Bil, for bitstream reverse-engineering by correlating binary
bitstream data with data extracted from the netlist. Benz et al. stated that the reverse-
engineering of all hardware elements of an Xilinx FPGA, including routing information, is
considerably harder than assumed. According to their analysis, it is rather difficult to reverse-
engineer all hardware elements in an automated manner, hence they questioned the claim of
Note and Rannaud.

Another work was presented by Ding et al. in 2013 [DWZZ13]. The authors provided detailed
evaluations showing that the binary bitstream files can almost entirely be translated back to its
netlist or graphical representation. According to their findings, most parts can be translated
back as their results vary between 87% and 99% in terms of routing resources.

In early 2017, as research progressed, Pham et al. [PHK17] published a more advanced tool
called BITMAN. This tool is able to parse, analyze, and manipulate Xilinx bitstreams, including
newer FPGA families such as Zyng-7000 and Kintex Ultrascale. Unlike the previous tools, it
can replace larger modules in a complex hardware configuration. Furthermore, a high-level
Application Programming Interface (API) provides functions to replace entire FPGA regions,
to re-route (clock) wires, and to manipulate LUT and BRAM configurations.

Altera FPGAs

Jean-Baptiste Note also published the source code for reverse-engineering an Altera bitstream
as part of a project called debit [Not08], although this was not an official scientific publication
and the target FPGA models remain unknown. Note that the debit project is discontinued and
the Altera bitstream reverse-engineering code is incomplete.

In 2016, Jean-Francois Nguyen demonstrated the practical feasibility of reverse-engineering
Altera bitstreams by explaining how to exploit the non-determinism of the place-and-route tool
to extract the bits corresponding to each logic cell of an MAX-V Complex Programmable Logic
Device (CPLD), cf. [Ngul6]. Even though CPLDs are less complex than FPGAs, we expect
that his approach applies to Altera FPGA bitstream reverse-engineering as well.

Lattice iCE40 FPGAs

In 2015, Wolf and Lasser reverse-engineered the Lattice iCE40 FPGA, which is for example used
in HT'C Vive’s Virtual Reality system and many other practical applications. The authors have
published their results as documentation [WL] and provide fully working parsing tools along
with the corresponding source code. As opposed to the reverse-engineering of other FPGAs
bitstreams, this project seems to be the first complete and publicly available one. Hence, it
enables third-parties to develop open source synthesis tools for generating bitstreams. In turn,
this allows third-party bitstreams to be analyzed and manipulated at a very low level without
the need to re-run the entire synthesis process.

Chapter 1. Introduction

1.2.3 Malicious Bitstream Manipulations

In 2013, Chakraborty et al. [CSPN13] demonstrated how to accelerate the aging process of an
FPGA by merging a ring-oscillator circuitry into an existing bitstream. This kind of Trojan is
described as a “Type 1 Trojan”, i.e., it does not tamper the relevant parts of a cryptographic
algorithm or access control mechanism, but rather addresses unoccupied hardware elements.
The disjunctively added ring-oscillator Trojan circuitry performs redundant circuit switching to
increase power usage, thereby leading to an increase of the operating temperature of the FPGA
device, and as a consequence, to a reduced lifetime.

Another related malicious bitstream manipulation work was done by Aldaya et al. In early
2015 [A. 15], they demonstrated a key recovery attack for all AES key sizes by tampering AES
T-boxes, which are stored in the BRAM of Xilinx FPGAs. It is a ciphertext-only attack and it
showed that various FPGA-based AES implementations can be compromised this way.

After presenting the related work, we further would like to pinpoint the interested reader to
another large body of research addressing various aspects of cryptography and FPGAs, which
can be found in [Dri08].

1.3 Contribution and Organization of this Thesis

We summarize the contribution of this thesis and outline the structure of this work. This thesis
is based on joint work with Georg Becker, Philipp Koppe, Marc Fyrbiak, Amir Moradi, Russell
Tessier, and Christof Paar.

m Chapter 2 provides the necessary background information regarding Xilinx FPGAs and
introduces notations for AES-128. Additionally, the adversary and system model are
described, which are valid for almost any conducted experiment within the scope of this
thesis.

m Chapter 3 demonstrates that the design security feature of Stratix III is vulnerable to
reverse-engineering and side-channel attacks. Hence, our contribution is to raise aware-
ness for security engineers that the bitstream encryption scheme of Stratix III is weak
enabling cloning and manipulation of a seemingly protected IP. One take away message
is that Stratix III FPGAs should be used carefully in real practical applications requir-
ing confidentiality and integrity of the bitstream. This side project is a follow-up work
of [MOPS13]. We published the corresponding results in [SMOP14].

m Chapter 4 introduces the first successful malicious and targeted hardware configuration
attacks on Xilinx FPGAs by altering third-party DES and AES bitstreams leading to a
security breach. To this end, a new approach is presented for algorithmically detecting
and replacing distributed DES and AES S-boxes directly in the bitstream. Further, it
is explained how to manipulate the hardware configuration in such a way that i) the
computed DES or AES ciphertexts become cryptographically weak or that i) the 128-bit
AES key can be extracted directly after power-up of the system.

The main contribution of this thesis is to introduce a new kind of research field, namely ma-
licious bitstream manipulations, and to prove that many Xilinx FPGAs are not well suited
for executing cryptographic algorithms securely (unless secure authentication schemes are

1.3. Contribution and Organization of this Thesis

provided) by conducting real practical attacks at the bitstream level. Hence, we raise
awareness that appropriate difficult-to-patch countermeasures should be researched and
integrated, e.g., as part of the hardware configuration. Further, it highlights that con-
sidering laser-fault injection or side-channel attacks as the only practical threats is not
sufficient to achieve a desired security level. The findings of this chapter were published
in [SFKP15].

Section 4.5 of Chapter 4 introduces a new countermeasure for AES cores that are sup-
posed to provide an increased resistance against the attack vectors presented in Chapter 4.
Hence, the contribution to this project is to present a new countermeasure concept for
impeding targeted bitstream manipulations, to implement the required software and hard-
ware part, and to evaluate the resulting hardware costs. The results of this chapter were
published in [SFPT15].

Chapter 5 highlights the practical relevance of the proposed bitstream manipulation of
Chapter 4. The contribution of this work is to demonstrate the first real-world FPGA
Trojan insertion into a commercial high-security and FIPS-140-2 level 2 USB flash drive
from Kingston. Therefore, it highlights that the introduced bitstream manipulation at-
tacks are indeed practically relevant exhibiting a real threat. Our findings were published
in [SFK*16].

Chapter 6 presents our most recent bitstream attack strategy, called Bitstream Fault
Injection (BiFI), where it is demonstrated that even automatic and random bitstream
manipulations on third-party AES hardware configurations lead to permanent exploitable
faults. This allows to compromise a variety of implementations leading to key recovery
including the countermeasure-protected AES core of Section 4.5. It turned out that this
new kind of attack also works for a Xilinx Virtex 5 FPGA with an enabled bitstream
encryption scheme. Thus, our contribution here is to raise security awareness by demon-
strating a more generic key recovery approach and by finding that a weaker attacker is
required than indicated by the results of Chapter 4. Particularly, by proving that there is
no need) to reverse-engineer the hardware configuration, ii) to reverse-engineer the LUT
encoding (even though easing the attack) of the bitstream, and iii) to conduct a side-
channel attack on the bitstream encryption scheme to break the underlying cryptographic
hardware configuration. The corresponding results were made public in [SBMP17].

Chapter 7 evaluates the impact of this conducted research and proposes future directions
with respect to FPGAs.

Chapter 2
Technical Background

In this chapter, we provide background information regarding Xilint FPGAs, which
1s necessary to fully comprehend the bitstream manipulation attacks presented within
this thesis. Additionally, we introduce the underlying system and attacker model.
Finally, we present notations for the AES-128 block cipher, which we consistently
use throughout all chapters.

Contents of this Chapter

2.1 Xilinx FPGAs e e e e e e e 11
2.2 System and Adversary Model 15
2.3 AES Basics e e e e e 17

2.1 Xilinx FPGAs

An FPGA can implement arbitrary functionality such as simple XOR and AND gates. Also,
more complex combinatorial functions can be realized. Its complexity is only limited by the
number of available resources offered by an FPGA device. Hence, an FPGA is highly flexible
and is suited for running special-purpose applications. The internal hardware architecture of
an FPGA varies between devices of different vendors and even the ones from the same family
of a vendor. Xilinx FPGAs achieve a high customizability by integrating thousands of building

10B 10B 10B 10B 10B

I0B CLB BRAM CLB DSP CLB 10B

10B CLB BRAM CLB DSP CLB 10B

10B CLB BRAM CLB DSP CLB 10B

10B 10B 10B 10B I0B

Figure 2.1: Building blocks of Xilinx FPGAs

blocks such as Configurable Logik Blocks (CLBs), BRAMs, Digital Signal Processings (DSPs),

11

Chapter 2. Technical Background

and Input Output Blocks (IOBs). These are connected to a reconfigurable routing fabric,
cf. Fig. 2.1.

2.1.1 Hardware Resources

A simplified overview of a Xilinx Spartan 6 CLB is presented in Fig. 2.2. All of these CLBs
implement the logic function of a desired circuit. A CLB consists of so-called slices and a
switch-matrix. Depending on the FPGA family, usually two or four slices are part of one CLB.
Note that this number may vary for older or newer FPGA generations. Switch-matrices connect
the slices to the routing fabric, which in turn can connect external devices through 10Bs.

Configurable Logic Block Sliee
:777777777777777777777777777777777771: : N 1. D-FIip-FIopor’Iatchi
} l LSl T o ol |
| SLICE | ! e e i
1 | | NI
| | b s |
! ! Pl T _'g D-Flip-Flop orlatch:
| . SLICE ! - 7 —o —
! Switch | ; Je ° :
' | Matri ! Lo - o i
| * SLICE | = r o
| w Lot 4 ; !
! : : i —D ' i
: ! i = D-Flip-Flop or latchi
w ! i 1. |
| SLICE 1 = A
; : = 4o |
w ! P VAN i
S e |

Figure 2.2: Exemplary CLB content Figure 2.3: Overview of one slice

Figure 2.4: Simplified Spartan 6 FPGA architecture

Each single slice is positioned on the FPGA grid and labeled with a (X,Y)-coordinate. Ac-
cording to the Xilinx device library of the ATHENa project [GKAT10], the number of slices
ranges from 600 to 305400 slices. Note that other Xilinx FPGAs may exist exceeding the
discussed thresholds. Slices contain further programmable low-level hardware elements such
as LUTs implementing Boolean functions, dedicated multiplexers selecting one or more input
signals and forwarding the selection to a single output line, D-FFs implementing registers, or
latches for realizing level-sensitive registers, cf. Figure 2.3.

All these elements form larger parts of the final hardware configuration. Besides LUTs and
registers, several other hardware elements exist such as clock trees or dedicated DSPs allowing
area-efficient implementations of complex high-performance arithmetic operations. Since we
target LUT and BRAM primitives during our bitstream manipulation attacks, we now describe
them in more detail.

Look-up tables (LUTs) are the main logic element. As mentioned before, they implement
Boolean functions, and hence, are used for different tasks like storing constants, processing
input signals, saving/loading data from flip-flops, copying signals from one location to another,
controlling data buses or writing/loading BRAM contents. Xilinx FPGAs instantiate k-input,

12

2.1. Xilinx FPGAs

l-output LUTs! with & € {4,6}. A 2F-bit LUT can implement any k-input Boolean function
f(x) simply by storing its corresponding truth table. It is encoded as a sequence of bits, which
we refer to as LUT content, (truth table) pattern, or as 2F-bit truth table 7 implementing
T[r] = y = f(z) with € {0,1}* and y € {0,1}, cf. Table 2.1 and Table 2.2. Note that one

k-input, 1-output LUT can describe 2(2") different Boolean functions.
6-input 1-output 4-input 1-output
X5 | X4 | X3 | X2 | X1 | X0 | T[x]| =9y = f(x) x3 | X2 | x1 | X0 | T[x] =y = f(x)
0 0 0 0 0 0 ap 0 0 0 0 aop
0 0 0 0 0 1 al 0 0 0 1 aq
T 1 [1] 1[1]1 63 1] 1]1]1 a1s
Table 2.1: General shape of a 6-input, 1-output Table 2.2: General shape of a 4-input, l-output
look-up table, e.g., used by Xilinx look-up table, e.g., used by Xilinx
Spartan 3 FPGAs Spartan 6 FPGAs

There are k! possible combinations in order to connect k arbitrary input signals to one k-
input,l-output LUT. Since in Chapter 4 we require the terminology input permutation for
successfully detecting relevant cryptographic Boolean functions that are implemented in LUTs,
we consider a toy example of two different LUT configurations. Fig. 2.5 shows two possible ways
of connecting 6 input signals {zg, 1, ..., 25} to the same 64-bit LUT, which both implement the
same Boolean function f(z). The order of connecting a 6-input signal to a LUT is referred

input permutation 1 input permutation 2
Xs—»| A6 y[> Xo—| A6 15g
X4 | A5 Xa4—9| A5
X3 | A4 X3—p| A4
X2 |A3 LUT X2 | A3 LUT
X1 A2 X1—p| A2
Xo—| A1 Xs—p| A1
. truth table truth table
i 0x4000000000000000 __} i-0x0000000080000000 _ }

Figure 2.5: Example for configuring a truth table of one LUT using two different input permu-
tations (x5, x4, 23, 22,1, %0) and (zo, T4, T3, T2, 1, T5)

to as input permutation. We for example consider that a LUT is supposed to implement the
following Boolean function f(x):

1 if ($57$4a$3a$27$1a$0) = (anaovov(]? 1)

rs5,24,23,22,T1,20) =
f(A 0) {0 if (ZIZ’5,ZE4,IZ‘3,IE2,ZE1,{L’0)#(07070)07071)

IFor the sake of simplicity our explanations only consider 6-input,l-output LUTs even though Spartan 6
FPGAs for example can instantiate 6-input,2-output LUTs by sharing the LUT inputs.

13

Chapter 2. Technical Background

In case the first input permutation (xs,x4,x3,x2,21,x0) is for example determined by the
synthesizer (cf. left part of Fig. 2.5), the correct truth table content for implementing f(z)
is (ag,aq,...,a63)2 = (0,1,0,...,0)2 = 0x400000000000000016. Given that a different input
permutation, e.g., (xo, x4, 3, T2, 1, T5) is determined (cf. right part of Fig. 2.5), now the correct
truth table content for implementing the same Boolean function f(x) is (ag,a1,...,as3)2 =
0x00000000800000001¢. As can be seen, patterns vary. Hence, an attacker, who is interested in
finding specific patterns, needs to keep this in mind.

Block RAMs (BRAMs) are programmable Random Access Memory (RAM) blocks that can
store up to 18Kb of data for Xilinx Spartan 6 devices. Block RAMs are placed in columns on
the FPGA grid, also labeled with a (X,Y)-coordinate. The number of available BRAM columns
depends on the size of the FPGA device. For Spartan 6 FPGAs, the number of 18Kb BRAMs
varies between 12 and 268 available units, cf. [Xil]. A BRAM supports two modes: it can either
be configured as two independent 9Kb RAMs or used as one 18Kb RAM. Each RAM block can
be configured to be either accessible through two ports or it may be initialized as single-port.
It supports different data width options such as 1-bit, 2-bit, or even 32-bit data widths, and
hence, offers various flexible modes of operation.

2.1.2 Design Flow for Bitstream Generation

Figure 2.6 shows the concept of translating an FPGA design into a bitstream. As can be
seen, the first step is to specify a hardware circuit with the help of Hardware Description
Language (HDL) code. Once a circuit is specified, the developer initiates the synthesis and
implementation process by using the vendor’s toolchain. In case the developer does not use
macros to exactly specify the usage of a hardware element and its location, the Xilinx toolchain
will automatically derive a plan of how to map and route all hardware elements to the available
resources on the FPGA grid to form the desired circuitry.

The developer neither exactly knows how all hardware elements will be instantiated nor can
he easily revert or understand the final hardware configuration. Note that even a change of one
single hardware element in the HDL code can lead to a complete change of the final hardware
configuration.

As indicated in Section 1.1, the hardware configuration contains a detailed description of
how to configure all hardware elements during power-up of the system. Particularly, it stores
information about truth tables, block RAM initialization, multiplexer configurations, routing,
and so forth. Finally, the hardware configuration is encoded as a bitstream file by a proprietary
encoding tool. In the field, this file is the only accessible one to an attacker, who wants to
compromise the FPGA configuration of an embedded device. Having detailed the design flow
process, we specify our system and attacker model in the next section.

14

2.2. System and Adversary Model

Developer’s
Ao = Functional description
@ ++y of hardware design

4 Proprietary Synthesis
Tools
Incomplete
hardware configuration
Tooling
Domain
% < Proprietary Place &
Route Tools
Fully placed and routed
hardware configuration
(nethst)
Proprietary Bitstream
A Encoding Tool
'S :
Attacker’s Encoded hardware
. configuration
Domain = .
< (proprietary bitstream)
' Non-volatile memory
\‘“ | ¥

Figure 2.6: Simplified design flow of Xilinx FPGAs, which translates a high-level hardware
layout to a low-level hardware configuration

2.2 System and Adversary Model

As explained in Section 1.1, FPGAs employ volatile memory, thus they require an external
(usually untrusted) storage, e.g., a flash or EEPROM chip to store the bitstream file. It needs
to be loaded upon power-up of the FPGA, cf. Fig. 2.7.

We assume a target device using a non-volatile memory chip that is integrated on the same
PCB as the FPGA. The memory chip contains an unknown third-party bitstream describing a
cryptographic circuit. Therefore, our adversary does not possess any high-level implementation
information regarding the circuit such as the corresponding human-readable HDL source code
or the design’s low-level netlist. We further assume that the cryptographic key is not directly
accessible to the adversary. For example, it can be encoded or obfuscated in external memory,
stored in a secure on-chip memory, hard-coded in the design/bitstream, or generated internally
by a Physically Unclonable Function (PUF).

Like most implementation attacks relying on side channels or fault injections, our attack
requires physical access to the target device containing the FPGA. We assume that the ad-
versary has read and write access to the external memory storing a bitstream. Our adversary
can arbitrarily manipulate the bitstream, replace the original bitstream by a malicious one, and

15

Chapter 2. Technical Background

Printed Circuit Board ""-"“-"-""""""“""""""“"""-"“"""“E

: description of unknown :

! bitstream (cryptographic) circuit i
! plaintext p
>

manipulations
' ciphertext ¢

Configuration

on power up SRAM-based

FPGA

Crypto API

Standard PC
Setup

,,,,,

binary encoded
bitstream file

Figure 2.7: Overview of system model. A proprietary bitstream file implements an unknown
circuit (e.g., AES), which configures an FPGA once it is powered-up. After this
phase, a control circuit provides an interface to the encryption application. In
practical applications, the bitstream and FPGA are integrated on the same PCB

consequently he is able to observe the altered behavior of the FPGA. Hence, we assume that
our adversary can query the cryptographic implementation with a chosen plaintext and collect
the corresponding ciphertext.

2.2.1 Practical Hurdles

Since the bitstream encoding is proprietary, one cannot directly analyze the low-level hardware
configuration of any building block of a Xilinx FPGA. Hence, an attacker at least needs to
partially translate the bitstream encoding to be able to analyze the hardware configuration.

Otherwise, no targeted manipulations are possible. To provide a first impression of the bitstream

Unknown encoding

Xs—p g X5 Xa X3 X3 X1 Xo| y=T[x] l FPGA bitstream

Xs—» 00000 0| [{o,1f—_|

X3—p ’]

x| LUT |¢= 000001 {O’lrhﬁ‘“‘%ﬁ 64-bit truth table T
ilj : mapped to bitstream
i 11 14 14 | o

Figure 2.8: On the left, a 6-to-1 LUT with 6 input bits and 1 output bit is depicted. The LUT
is a truth table T with 64 entries that are stored in the bitstream

encoding and its relation to storing the description of a hardware element, we shortly present one
found example: the 64 bits of each LUT are mapped to fixed positions within the bitstream file
according to specific previously unknown rules. This is depicted in Fig. 2.8. The raw bitstream
file has a fixed length, and hence, the positions to encode one specific LUT always remain the
same even though completely different hardware configurations were generated. The process of
reverse-engineering the bitstream encoding has been shown multiple times so far. Since we did
not have access to any extraction tool for our targeted FPGAs, we needed to partially learn the
bitstream encoding to be able to explore the feasibility of bitstream manipulation attacks.

16

2.3. AES Basics

2.3 AES Basics

In this section, we shortly introduce AES focusing on AES-128. Figure 2.9 shows an overview of
the AES-{128,192,256} encryption scheme for the three different key sizes 128, 192, and 256 bit
leading to the execution of 10, 12, or 14 rounds, respectively [NISOla]. AES operates on 128-bit

plaintext p
128

rk,-,_'[wio]] Wi1]] w(2]] wi3]]

ey -

128
128 i v + —]

SubBytes SB(st) | 1 +) 4

—'@

[Key Scheduling l

ShiftRows SR(st)

round j

MixColumns MC(st)

|w'['41 w‘151|w‘1'61|mn| B EE

AddRoundKey KA(st) E E : .RC—P®
| W[36)] w[37]] wi[38] l W[39]]
i B |

+

Y

AddR dKey KA(st)
128

. r A4 A4
ciphertext c "‘i"‘__| W[a0] | wia1] | w[a2) I w[a3] |

+

Figure 2.9: Overview of the AES en- Figure 2.10: Key schedule of AES-128
cryption algorithm

blocks, independent of the key size. It encrypts a 128-bit plaintext p with a given key rkqg. Each
AES round consists of the operations SubBytes (SB), ShiftRows (SR), MizColumns (MC'), and
AddRoundkey (K A), which are executed consecutively. The SubBytes step processes sixteen
intermediate bytes by using a secure and constant S-box. For round-based implementations, it
is common to use multiple S-boxes such that each input byte can be processed in parallel. In
addition to that, for a round-based implementation, the key schedule step also needs to process
four S-box instances. The key schedule algorithm of AES-128 is depicted in Fig. 2.10. As some
of the presented attacks require addressing specific parts of the AES-128 block cipher, we hence
introduce and use the following notations throughout this thesis.

® p, k,c: 16-byte plaintext, key, ciphertext with ¢ = AES128(p).

B ¢ 16-byte faulty ciphertext resulting from a manipulated AES module that we refer to as

é
¢ = AES128(p).

m rk;j : 16-byte 4™ round key being used at round j € {0,1,...,10} with rk; being the first,
rkyo the last round key, and rkq the initial key k.

m SB(st),SR(st), MC(st), KA(st) : SubBytes, ShiftRows, MixColumns, and Keyadd oper-
ations on the current 16-byte state st. Analogously, SB~!(st), SR™1(st), MC~1(st), and
K A=1(st) represent their inverse functions.

17

Chapter 2. Technical Background

m S(z) refers to one call of the 8-input,8-output S-box of AES.

To mark each of the possible AES states with a label, we use the following definitions.

kaj: 16-byte state at start of round j

sb;: 16-byte state after SubBytes operation at round j.

m sr;: 16-byte state after ShiftRows operation at round j.

m mcj: 16-byte state after MixColumns operation at round j' € {1,2,...,9}.
m 0'28: A string of 128 bits set to zeros.

Note that there is no MixColumns operation during the last round, i.e., j = 10 for AES-128.

Before demonstrating our bitstream-based attacks against Xilinx FPGAs, we first present our
follow-up work of [MOPS13], where we prove that the bitstream encryption scheme of Altera
Stratix III FPGAs is vulnerable to side-channel attacks. Our motivation is to raise security
awareness.

18

Part 11|

FPGA Security

Chapter 3
Bitstream Encryption

The work of Moradi et al. [MOPS13] showed that the bitstream encryption scheme
of Altera Stratiz Il FPGAs can be circumvented through reverse-engineering Altera’s
toolchain and performing a side-channel attack, where the power-consumption of the
device is exploited to disclose the secret bitstream encryption key k. The contri-
bution of this chapter is to prove that the attack on Stratix II can also be applied
to Stratiz Il FPGAs requiring additional engineering efforts. For complete details
of Stratix I FPGAs, which are helpful for understanding the adapted attack on
Stratiz II1 FPGAs, the reader is referred to [MOPS13]. Note that Amir Moradi was
the main project leader, who also conducted most of the side-channel steps, which
we present for the sake of completeness.

Contents of this Chapter

3.1 Motivation e 21
3.2 The Design Security Feature of Stratix IIIl FPGAs 22
3.3 Required Reverse-Engineering Steps for Stratix III FPGAs 23
3.4 Required Side-Channel Steps for Stratix III FPGAs. 24
3.5 Conclusion e 27

3.1 Motivation

The content of a user’s bitstream file is usually the result of major investments in manpower
and development costs. To protect this valuable IP against theft or cloning, the major FPGA
vendors introduced bitstream encryption. Altera’s bitstream encryption scheme (which is called
design security) is making use of the AES. In 2013, Moradi et al. [MOPS13] demonstrated that
the bitstream encryption scheme of Altera Stratix IT FPGAs is insecure, since it is vulnerable to
side-channel attacks leading to key exposure. Because public documents indicated that newer
Stratix families including Stratix III FPGAs use AES-256 instead of AES-128, our motivation
was to examine whether the newer devices are still vulnerable to side-channel attacks. Once such
vulnerabilities can be demonstrated, consecutively, besides raising awareness that IP cloning
is possible, we also learn that an adversary is likely able to carry out (malicious) bitstream
modifications, which is the major research topic of this thesis.

21

Chapter 3. Bitstream Encryption

3.2 The Design Security Feature of Stratix Il FPGAs

The Stratix III series is the third generation of Altera Stratix FPGAs. According to [Corl2],
Stratix III is manufactured using a 65nm technology, while Stratix II FPGAs are based on
90nm technology and therefore come with a lower static and dynamic power consumption
than Stratix IT FPGAs. The platform we selected to examine the side-channel vulnerability of
Stratix III FPGAs is a standard development kit [Alt08] for the Stratix III EP3SL150F1152
high-performance FPGA, cf. Fig. 3.1.

. "%
4

Figure 3.1: Device under attack - Official development board containing a Stratix III FPGA

To be able to conduct a successful attack, one needs to 7) reveal the work-flow of the bit-
stream encryption scheme through reverse-engineering the vendor’s software and i) observe
side-channel characteristics that leak the bitstream encryption key k during the decryption
process.

One difference between Stratix II and Stratix III FPGAs is that the newer series features
a hardware-based decryption module which uses AES-256 instead of AES-128 to decrypt and
configure encrypted bitstreams. Similar to the required reverse-engineering steps of the Quartus
application for attacking Stratix II FPGAs, we needed to reverse-engineer the inner workings'
of the key derivation function, the utilized encryption mode?, or the resulting AES inputs and

!Note that the reverse-engineering of the key derivation function and parts of the utilized encryption mode
were already done during my Master thesis, but the proprietary AES input function f was unknown. Hence,
reverse-engineering f (enabling the side-channel part) and adapting the passive serial configuration protocol for
Stratix IIT was my main contribution to this project.

2The utilized mode of operation turned out to be similar to the AES in counter mode and therefore only uses
the AES encryption to generate a key stream for the actual encryption.

22

3.3. Required Reverse-Engineering Steps for Stratix Il FPGAs

the corresponding AES input update function that we refer to as f. During the initial setup
phase, a bitstream encryption key k needs to be implicitly programmed through providing
two 256-bit sequences called KEY; and KEY5 into the FPGA’s decryption hardware module.
Obviously, the same bitstream encryption key k£ must be used in the vendor’s tool to generate
an appropriate encrypted bitstream. By doing so, the encrypted bitstream can be securely
stored in external memory. In an ideal world, an attacker should never obtain any access to
the bitstream encryption key k. Our intention is to extract the bitstream encryption key k by
means of a side-channel attack.

The main prerequisite to conduct a side-channel attack for the Stratix IIT FPGA is to know
the inputs which are processed by the AES encryption module during bitstream decryption.
If the inputs remain unknown, it is difficult to create key guesses and to derive appropriate
intermediate hypotheses. The hypotheses are needed for an attacker who can then try to
correlate them with either the measured power consumption or the Electro-Magnetic (EM)
emanation of the target device by using Pearson’s correlation coefficient, cf. [Wik]. Hence, the
necessary reverse-engineering steps for f are outlined in the next section.

3.3 Required Reverse-Engineering Steps for Stratix |1l FPGAs

In order to obtain the remaining required details, we continued to reverse-engineer the Quartus I1
application and revealed the necessary work-flow of the entire design security scheme for the
Stratix IIT FPGA (fabric EP3SC150). Further note that when knowing the AES input update
function f, all AES inputs required to decrypt a bitstream file can be reconstructed given
the initial Initialization Vector (IV) (extractable from the bitstream file header with the help
of the reverse-engineered encoding table which is described in [MOPS13]) and the bitstream
encryption key k (once obtained by the attacker).

Regarding Stratix II FPGAs, the usual counter mode of AES increments its inputs and is then
encrypted to produce a key stream which is XORed with the plain bitstream, cf. [MOPS13]. In
contrast to that, we noticed that Stratix III FPGAs use a proprietary function f to derive an
updated AES input, which in turn is again encrypted to produce a random keystream output.
For reverse-engineering f, we observed the Quartus II application in the debugger of IDA
Pro. Figure 3.2 gives a simplified overview of the executed functions from which we learned
the work-flow of the bitstream encryption process in software making it possible to conclude
the decryption process of the hardware-based bitstream decryption module. As depicted in
Figure 3.2, an initially unknown function sub_10007310(3) (implementing f) is executed to
generate the next input for the AES execution. The integer value “3” is passed as an argument
to this function. When observing the memory locations being read by this function, it turned
out that the bytes located at address p3 are repeatedly accessed. We found that the value at
address p3 is updated three times (as specified by the argument “3”) in a loop and that the result
is directly related to the next AES input. Subsequently, we analyzed the assembly instructions
of f and found that the update is performed as depicted in Figure 3.3.

It turned out that f (sub-10007310(3)) implements a 64-bit Linear Feedback Shift Regis-
ter (LFSR). If the Least Significant Bit (LSB) of the first byte IV} is set to “1”, the value
0x20 24 00 10 10 00 00 01 is XORed to the current 64-bit state and the whole LFSR is
rotated to the right by one bit. If the LSB is set to “0”, the XOR operation is skipped. This
process is repeated three times yielding the updated 64-bit value. Once this corresponding

23

Chapter 3. Bitstream Encryption

: h 4
Clear AES mput atp;

Update AES input using p, l

Copy initial v
IV from p, —# Clear AES output at p,
top: ¥

call aes_encrypt(...

XOR unentrypled block with
AES output at p,

[EECTIREN ..

Figure 3.2: Observed execution order of the encryption module of Stratix III FPGAs

A cocied 3 times ' G i
(o0 N [ox10) (ox10) (ox01)
v v v k2 v
] > X x| lex] X
v v v v
| XOR XOR | XOR :__ XOR . XOR)
S 4 = , _¥ - W
’—b ' —.{_ v, —’—{ 11"/ '—"{_ L' _’JL: IV, H v, _JL_ v]—’ v, n|

Figure 3.3: Overview of the function f responsible for updating AES inputs

64-bit value is derived, the 64-bit value is duplicated and appended to itself forming the up-
dated 128-bit AES input. While the update mechanism of the 64-bit state is different when
compared to Stratix II FPGAs, the same duplication step of the 64-bit state can also be ob-
served in [MOPS13]. Algorithm 1 gives a possible implementation of the function f. With a C
implementation of f, it took less than one second to compute all IVs from the initial IV which
is stored in the file header.

Once this information is revealed, an attacker is able 7) to conduct side-channel experiments
for recovering the bitstream encryption key k and later on he is capable of i) decrypting the
entire encrypted bitstream file making IP cloning or manipulation possible. Therefore, in the
next section, we provide the required side-channel attack steps.

3.4 Required Side-Channel Steps for Stratix Il FPGAs

With the knowledge of computational steps of the AES inputs presented in the previous section,
we are able to analyze the Stratix III from a side-channel point of view. Hence, in this section
we describe the required steps for a successful key recovery.

In contrast to the case of Stratix Il FPGAs, our targeted development board has not been de-
signed for Side-Channel Analysis (SCA), and hence, does not provide appropriate measurement

24

3.4. Required Side-Channel Steps for Stratix Il FPGAs

Algorithm 1 Pseudo-code for AES input update function f

Input: IV =1Vg |[IV7 || IVs |[IV5 || IVy || IV || IV; || IVA, 1V; one byte
Output: Updated IV

fort=1...3do
if LSB(I/V;) = 1 then
1V «— IV ¢ 022024001010000001
IV <« rotate_right, (IV)

points that are well suited for recording the power consumption of the targeted FPGA. Hence,
we decided to perform an EM-based side-channel attack. The side-channel leakage is recorded
by an EM probe. The FPGA, which is one of Altera’s high-density FPGAs, is covered by a
metal cap as a heat sink. This cap dampens EM emanations that are observed with a probe on
top of the FPGA. Therefore, we removed the cap by means of mechanical tools to directly ac-
cess the FPGA die, cf. Figures 3.4.(a-c). Another issue was to select an appropriate probe and
to localize the best probe position (with low noise level) so that suitable side-channel leakage
can be acquired. We experimentally tested several EM probes and numerous positions. The
best result in our experiments was achieved with an H-Field near-field RF-R 3-2 probe made
by LANGER EMV-Technik [ET13]. Note that we also needed to modify parts of the PCB to
support the passive serial configuration mode. By soldering additional wires to the FPGA’s
configuration pins, we acquired an additional port allowing us to implement and perform the
configuration process on our own.

FEPISLISOF
‘Y JCBJA

Figure 3.4: Stratix III FPGA development kit, a) the original FPGA, b) and ¢) removing the
metal cap of the FPGA, d) the decapsulated FPGA with an EM probe at the optimal
position

The probe position for which we observed the best side-channel leakage is shown in Fig. 3.4.(d).
Since the amplitude of the signal was still low, we used two Mini-Circuits ZFL-1000LN+ am-
plifiers [MC13] connected in series to obtain EM signals filling the input range of the Digital
Storage Oscilloscope (DSO). The used DSO is the same as for Stratix II, i.e., a LeCroy WavePro
715Zi, however, we performed the measurements at a higher sampling rate of 10 GS/s and a
bandwidth of 1 GHz.

The measurement scenario is different compared to the case of Stratix II: due to the counter
mode used in Stratix II, most of the AES input bytes remain unchanged during one power-up

25

Chapter 3. Bitstream Encryption

of the system. This prevents side-channel attacks to effectively recover all key bytes from a
single (or few) power-up(s). To this end, we had to perform the measurement for Stratix II by
repeating the following scenario:) choose a random IV, ii) power-up the Stratix II FPGA,
and 7i7) measure a few traces corresponding to the first few encryptions being performed by the
FPGA.

In contrast, as stated in Section 3.3, the counter mode is not used by Stratix III FPGAs.
Instead, due to the update function f two consecutive AES input blocks differ completely, and
thus each byte is essentially randomized. Therefore, the aforementioned measurement process
is not required here, and one can collect measurements during a single power-up of a Stratix I1I
FPGA (configured by the original encrypted bitstream).

From the obtained Stratix IT results (cf. [MOPS13]), we assumed that the FPGA’s hardware
decryption circuit is basically the same even though AES-256 is used instead of AES-128.
Therefore, we did not see any necessity to adapt the hypotheses used for the Stratix II FPGA.
Hence, the remaining task was to check whether the internal architecture we discovered for the
Stratix IT AES module is indeed identical for Stratix III.

As the first step, we worked in a known-key scenario (256-bit AES key) and tried the model
that worked best for Stratix II. In other words, we computed the correlation coefficient between
the EM traces measured during one full power-up of the Stratix III, i.e., 365,000 traces, and the
Hamming Distance (HD) of consecutive bytes in each row of the AES state after ShiftRows in
the first round. For more information, we refer to [MOPS13]|. The result shown in Fig. 3.5
clearly indicates the correctness of this power model and our guess for the internal architecture.

0.015

0.01

0.005 il

Correlation

0

il

15 20 25 30 35 40
Time (us)

Figure 3.5: Correlation coefficient for the HD of the row-wise consecutive ShiftRows bytes using
365,000 traces measured during one power-up of the Stratix III

In order to mount an attack, one has to first recover all 16 key bytes of the first round, which
form the first half of the 256-bit key. Due to the structure of AES-256, the second half of the
key is used as the round key in the second round. Therefore, after having recovered the first
round key, the input of the second AddRoundKey for each plaintext can be computed. Hence, the
attack is extended to the second round by guessing 16 additional key bytes (second part of the
key). These bytes can be recovered using the same power model and the same hypothesis for
the architecture. Due to a higher noise level in EM measurements compared to power traces,
it might be the case that the traces measured during one power-up are not sufficient for a
successful side-channel key recovery.

26

3.5. Conclusion

In this case, the measurement process can be repeated for more power-ups — using the same
encrypted bitstream — until the required number of traces has been collected. Similar to the
Stratix I1, the quality of the traces could also be improved by applying filters. We should mention
that we have examined a complete key-recovery attack on different encrypted bitstreams of
Stratix III; in the worst case, we required the traces of 5 power-ups to fully recover the 256 bits
of the key.

3.5 Conclusion

Having shown the practical feasibility for attacking Stratix III FPGAs, we would like to depict
the main differences in Table 3.1 and then conclude our results.

Altera Stratix II FPGA Altera Stratix III FPGA

Platform } Side-channel Sasebo-B Board } Official Development Board

Process ‘ 90nm ‘ 65nm

Bitstream Encryption Algorithm | AES128,(bitstream) [AES256(bitstream)

Block Cipher Mode of Operation ‘ Counter (CTR) ‘ Proprietary derivation function f based on CTR
Algorithm for Key Derivation k = AES128k gy, (K EY>) k = AES256k gy, (K EY>)

Applied Side-channel Attack Correlation Power Analysis (CPA) based on power consumption CPA based on electromagnetic emanation
Required Power-ups One for each power trace A few ones

Measurement Duration A maximum of a few hours.

Off-line Computational Power A maximum of a few hours.

Table 3.1: Required differences between Stratix II and Stratix III FPGAs when performing
reverse-engineering and a side-channel attack

Both bitstream encryption schemes do differ, but can be similarly attacked through conduct-
ing a side-channel attack. Measuring the power consumption or the electromagnetic emanation
of the target device leads to the leakage of the bitstream encryption key k.

Our previous attack on Stratix II FPGAs indicated that SCA countermeasures have been
likely ignored during the development phase. Those issues have not been addressed in the newer
Stratix III devices. The replaced AES update function f does not add further security to the
scheme. It should be noted that recent product families like Stratix V or Aria II probably deploy
the same bitstream decryption module. Therefore, it can be assumed that the shown attack is
adaptable to those ones. To sum up, both schemes do not provide the desired confidentiality
and integrity making IP cloning and (malicious) bitstream manipulations possible.

Since only little is known about the feasibility of bitstream manipulations of third-party
designs that execute cryptographic functions, we from now on focus on attacking unknown
encoded hardware configurations of Xilinx FPGAs. We introduce our new attack strategies in
the next chapters.

27

Chapter 4

Targeted Bitstream Manipulation Attacks
Against Reconfigurable Hardware

As explained in Section 1.2.1, the majority of bitstream encryption schemes, offered
by the two market leaders Xilinx and Altera, can be circumvented through side-
channel attacks. However, no prior research reports of malicious manipulations of
third-party bitstreams, which encode a cryptographic circuit, exist. In this chapter,
we present the first malicious bitstream manipulations, which undermine the security
of DES and AES cores. The examined cores are executed by SRAM-based Xilinx
FPGAs, where the majority was found to be vulnerable to our proposed attack. Our
manipulations either lead to weakened encryption schemes or to key recovery. We
further evaluate the feasibility of our discovered attack vector by examining 8 different
DES and 16 different third-party AES cores.

Contents of this Chapter

4.1 Motivationo e e e 29
4.2 Attack Idea - Substitution of S-boxes of Block Ciphers 31
4.3 Bitstream Encoding of Xilinx FPGAs 32
4.4 Exploiting Boolean Functions in FPGA Bitstreams 36
4.5 Mitigating S-box Substitution Attacks 53
4.6 Conclusion Lo 59

4.1 Motivation

In general, bitstream manipulations are feasible for most commercially available Xilinx FPGAs
due to the lack of (secure) encryption, integrity, and authentication mechanisms, cf. Sec-
tion 1.2.1. Even though it can be assumed that the unencrypted bitstream is known to an
adversary, whose goal is to compromise the implementation, two major problems remain: first,
as explained in Section 1.1, the bitstreams of all commercial FPGAs make use of proprietary
file formats. Thus, the attacker has to overcome an obfuscation hurdle. It is not documented
how the bits of a proprietary Xilinx bitstream file encode a hardware configuration. Therefore,
a tool must exist or has to be developed to partially reverse-engineer the file format in order
to be able to analyze the encoded circuit. Second, an attacker has to identify, locate, detect

29

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

and meaningfully manipulate the relevant hardware primitives of a complex and potentially
unknown hardware circuit.

Since an integrated circuit is split up into thousands of interconnected hardware primitives,
which are mapped to the FPGA elements, the analysis and recovery of the implemented func-
tionality is not a straightforward task. To give an example, Fig. 4.1 shows an enlarged segment

Figure 4.1: A fully mapped and routed hardware configuration showing a more specific part of
the FPGA grid with occupied hardware resources implementing an AES design. If
the corresponding intermediate file format is given in a practical attack scenario,
the hardware configuration could be viewed with the help of Xilinx’s FPGA editor.
It shows the switch-matrix, routing, and distribution of utilized slices. Note that
such a hardware circuit is encoded by the proprietary bitstream file. Therefore, an
attacker does not possess this representation

(switch-boxes, slices, and interconnections) of a fully mapped and routed hardware configura-
tion implementing an AES circuit. Under the given circumstances, an attacker cannot simply
distinguish between this circuit and other non-cryptographic circuits, especially if the bitstream
encoding is unknown. Therefore, it is beneficial for him to identify the work-flow of relevant
sub-circuits that are crucial for securely executing cryptographic operations. As we demon-
strate later, algorithmic analysis of the low-level hardware elements can facilitate meaningful
hardware configuration manipulations.

As explained in Section 1, there are no official tools being capable of parsing, analyzing,
and manipulating hardware configurations. Hence, it seems to be infeasible to meaningfully
manipulate a cryptographic core if only the corresponding proprietary bitstream (obscured
hardware configuration) is given with the goal of undermining the security of an embedded
device.

However, our investigations proved these assumptions wrong for many of the examined im-
plementations, since we discovered an attack vector that can potentially be used to undermine
the security of practical applications relying on FPGAs. Our findings show that an adversary

30

4.2. Attack Idea - Substitution of S-boxes of Block Ciphers

neither needs to reverse-engineer the entire bitstream file format nor does he need to understand
the complete functionality of a given third-party hardware configuration.

To demonstrate the feasibility of our approach, we utilize the SP601 Evaluation Kit featuring
a Spartan 6 FPGA (model XC6SLX16). Our target device offers 2278 slices, 9112 look-up
tables, 18 224 flip-flops, and 32 BRAMs with 18Kb of storage each. Our setup is depicted in
Fig. 4.2. This FPGA can be configured using the Joint Test Action Group (JTAG) interface.

Figure 4.2: SP601 evaluation kit featuring a Xilinx Spartan 6 FPGA serving as target device
for our proof-of-concept bitstream manipulation attack

4.2 Attack Idea - Substitution of S-boxes of Block Ciphers

Many modern block ciphers such as AES rely on using cryptographically strong functions.
Here, S-boxes are one of the most important primitives of a symmetric block cipher, as they are
the only non-linear part ensuring strong cryptographic properties such as confusion mitigating
crypt-analytical attacks. If the S-boxes of an AES implementation can be replaced by a linear
function, the manipulated algorithm becomes cryptographically weak, i.e., the corresponding
ciphertexts can be decrypted with one or a few known plaintext-ciphertext pairs. Our attack
relies on manipulating the S-boxes directly in a third-party bitstream, subsequently leading to
a weak cryptographic algorithm or key leakage. One main strength of this attack procedure is
that there is no need to take internal routing information into consideration.

To undermine the practical relevance, we target DES, AES, and 3DES which are the most
widely used block ciphers in current and legacy applications. Note that the attack is limited
to scenarios in which encryption and decryption are computed by the same device, e.g., USB
flash drives, solid-state disks, or encrypted cloud storage. The manipulations can also be used
in systems, where all involved devices can be altered. In case of attacking AES-128, fixing all S-

31

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

box outputs to zero leads to key leakage as explained in Section 4.4.6. A key recovery is feasible
if the target device automatically loads and processes the non-accessible cryptographic key.

4.3 Bitstream Encoding of Xilinx FPGAs

LUTs constitute an important hardware primitive in Xilinx FPGAs. They are mainly respon-
sible for implementing the combinatorial logic of a hardware configuration. When combining
LUTs with multiplexers, an FPGA can implement more complex combinatorial logic functions.
FPGAs use thousands of LUTs that either implement logic functions or serve as distributed
RAM. embedded in a slice, cf. Figure 4.6.

Since LUTs implement the primary functionality of an FPGA design, they are promising
targets for an attacker who intends to maliciously change the functionality of a third-party
bitstream. As many practical applications rely on Xilinx FPGAs, it is also quite important
to analyze the LUTs contents in terms of security. As indicated above, in the real world an
attacker usually only possesses the bitstream of a hardware configuration. Section 4.3.1 provides
the necessary information on how to derive all LUT bit positions enabling the manipulation.
Note that the LUT content bits are distributed over the bitstream following predefined, but
unknown patterns. We successfully obtained the bitstream encoding of two different FPGA
devices with different hardware architectures that are based on 4-input,l-output and 6-input,1-
output LUT principle. Note that the described approach can be applied for any Xilinx FPGA.
Additionally, we explain how to discover the bitstream encoding that describes how the BRAM
content is configured.

4.3.1 Extracting the LUT Encoding from a Bitstream

As an example, we consider a Xilinx Spartan 6 FPGA using a 6-input,1-output architecture. It
is part of the SP601 development board, cf. Section 4.1. It comes with the following hardware
architecture properties:

B Two slices are interconnected to a switch-matrix and can form an 8-bit data bus each.

m Four 6-input,l-output LUTs are embedded in one slice with the ability to store 4x64 bits
and to implement an 8 — 1 Boolean function.

B Three dedicated multiplexers within one slice being capable of combining LUT outputs.

To extract the bitstream encoding of all LUTs, initially an attacker has to conduct a learning
phase. The approach of deriving the LUT contents from a bitstream relies on generating appro-
priate hardware configurations specifying the rules of reconfiguring the hardware for the given
FPGA target. The hardware configuration can be used to manually configure any LUT with
an arbitrary 6-input, 1-output Boolean function. Listing 4.1 provides an example by showing
the configuration of four LUTs that are embedded in one slice. Note that the presented partial
hardware configuration uses a fictional syntax for the sake of simplicity.

32

4.3. Bitstream Encoding of Xilinx FPGAs

FPGA design "minimal_lut_implementation",

instance "slice_X_Y",

config {

content of LUT; = {0x0000000000000000} // 64 inputs output a logical ’0’ on evaluation

content of LUT; = {OxFFFFFFFFFFFFFFFF} // 64 inputs output a logical ’1’ on evaluation

content of LUT3 = {0x0000000000000001} // Only input z = 63 outputs a logical ’1’ on evaluation
content of LUT4 = {0x8000000000000000} // Only input z =0 outputs a logical ’1’ on evaluation
}

Listing 4.1: Hardware configuration example for specifying LUT contents

As further illustrated by Listing 4.1, each LUT of one slice can be configured by specify-
ing a 64-bit LUT content representing a Boolean function. An attacker configures two different
Boolean functions for exactly one LUT. Thus, he has to create two different hardware configura-
tions. Both are used to let the Xilinx tools generate two slightly different bitstreams. In the next
step, the generated bitstreams can be compared to extract the bitstream encoding. It should
be noted that for each input value one output bit is stored in the bitstream. The first hardware
configuration sets a LUT content to always output a logical zero (0x0000000000000000) for all
64 input values (6-input,l-output architecture). All 64 outputs bits together specify the LUT
content. In this case, 64 “0”-bits, which is the resulting LUT content of the currently discussed
Boolean function, are stored in the generated (final) bitstream. Analogously, in a 4-input,1-
output architecture (16 input values), only sixteen “0”-bits are stored for one LUT content in
the bitstream.

Now, a second hardware configuration, only differing in the specified LUT content, is gen-
erated. Instead of fixing the truth table to 64 zeros, the Boolean function is chosen in such a
way that it always outputs a logical one regardless of the input value (OxFFFFFFFFFFFFFFFF).
Again, the corresponding bitstream is generated. This leads to the storage of 64 “1”-bits in the
bitstream.

When comparing both bitstreams, one can observe that exactly 64 bits toggle from “0” to “1”,
while all other bits remain unchanged. Therefore, one can easily determine and store the
bitstream encoding of all 64 bits that are related to one LUT, but obviously the correct order of
these 64 bits stays unclear. It is important to know the correct order to be able to reconstruct
the correct Boolean function. Thus, an attacker has to extend the previous approach: now, the
idea is to additionally create 64 bitstreams from 64 slightly different hardware configurations.

Each hardware configuration is chosen to set an appropriate value (cf. Table 4.1) for the
same LUT such that only one bit of the LUT content is set, while all other 63 bits are cleared.
All 64 generated bitstreams can be compared with the bitstream, whose LUT content bits are
all cleared, because then only one bit toggles.

To be more precise, each LUT content bit is recovered separately by observing the toggling
positions, and thus, the correct order can be revealed. In a 6-input,l-output architecture, one
should generate 65 bitstreams for each LUT, while for a 4-input,l-output architecture only 17
bitstream generations are appropriate. This approach has to be repeated for all given LUTs
of the underlying FPGA in order to be able to extract all LUT contents from a third-party
bitstream.

Note that the bits of one LUT are not necessarily stored next to each other in the bitstream.
Instead, they are distributed in the bitstream file by following specific offsets rules. For example,
the first bit of one LUT content can be stored in the bitstream at position (Byte Y, Bit 0), while

33

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Generation of | Content of exactly one LUT Meaning
Bitstream 1 0x0000000000000001 Only input 0 outputs a 1
Bitstream 2 0x0000000000000002 Only input 1 outputs a 1
Bitstream 3 0x0000000000000004 Only input 2 outputs a 1
Bitstream 63 0x4000000000000000 Only input 62 outputs a 1
Bitstream 64 0x8000000000000000 Only input 63 outputs a 1
Bitstream 65 0x0000000000000000 Each input outputs a 0

Table 4.1: Generating 65 bitstreams for one LUT

the second bit may be located at position (Byte Y —8, Bit 5). We were able to practically verify
the correctness of our extracted bitstream encoding for any single LUT. This can be done by
setting a random configuration for any LUT (in a hardware configuration describing all LUTSs)
and by creating the corresponding bitstream. Then, the LUT contents can be parsed from the
bitstream and compared to the LUT contents of the previously generated human-readable hard-
ware configuration. Algorithm 2 illustrates this straightforward but time-consuming approach
in more detail. It can be used for k-input, 1-output based LUTs with & € {4,6}.

Algorithm 2 LUT encoding extraction for any k-input,l-output Xilinx FPGA with k € {4,6}

Input: k-input,l-output FPGA device file (report file) containing coordinate information
of all available LUTs on the FPGA grid with k € {4,6}

Output: Bitstream encoding lut_encoding of all LUTs allowing to dump all LUT contents
from any third-party bitstream belonging to one specific FPGA model.

configure_lut_content(a,b) creates a hardware configuration so that the LUT content is set
to b for the a'" LUT on the FPGA grid.

bitstream_lut_zero: Temporary reference bitstream file with zeroized LUT content.
bitstream_tmp: Temporary bitstream file with LUT content for which only one bit is set.

1: for lut_index = 0 to NUM_OF_LUTS - 1 do

2 Create minimal hardware configuration using configure_lut_content(lut_indez, 0)

3 Generate bitstream bitstream_lut_zero from previously generated hardware configuration.
4 for bit = 0 to 2¥ — 1 do

5: lut_content = 2%

6 Create minimal hardware config. using configure_lut_content(lut_index, lut_content)
7 Generate bitstream bitstream_tmp from previously generated hardware configuration.
8: Compare bitstream_lut_zero and bitstream_tmp and derive toggled bit position pos
9: Store toggled position lut_encoding|lut_-index][bit] = pos

10: return lut_encoding

A more sophisticated and considerably faster method is to learn the offset patterns of one or
several LUTs that can be applied to all other LUTs. For a mid-sized FPGA the computation
time is approximately 1-2 days, whereas the straightforward approach needs much longer. It

34

4.3. Bitstream Encoding of Xilinx FPGAs

must be highlighted that the learning phase has to be performed only once per FPGA device
and can be applied on any third-party bitstream fitting to the FPGA device.

4.3.2 Extracting the BRAM Encoding from a Bitstream

A common implementation strategy for storing data in a hardware configuration is to use the
dedicated BRAM of the FPGA. Hence, we describe how the corresponding bitstream encoding
of the BRAM can be obtained. Knowing this encoding, critical data like cryptographic keys or S-
boxes can be potentially extracted from the bitstream, since one obtains the plain representation
of the BRAM content.

Suppose that a fixed AES-{128,192,256} key with its corresponding subkeys has been placed
in the BRAM. An attacker then may easily verify the presence of these subkeys by finding
XOR-dependencies. This can be done with a tool called aesfindkey written by Haldermann et
al. [HSHT09].

For the reverse-engineering process, we need to create a VHDL file in order to derive the
appropriate low-level hardware configuration description that again serves for learning the bit-
stream encoding. A simplified VHDL code example, realizing an array of zeros, is depicted in
Code Listing 4.2. When using this VHDL code, the BRAM of the FPGA is filled with the spec-
ified bytes of the given signal rom_array. The corresponding low-level hardware configuration
of this design is generated to serve as input for Algorithm 3.

architecture rtl of BRAM_zero is

type rom_array is array (O to NUM_OF_BYTES) of
std_logic_vector(7 downto 0);
signal ROM : rom_array := (

XIIOOH, XIIOOII, X|IOOII’ XIIOOH’

XI!OOH, XIIOOII, X|IOOII’ XIIOOH
)

process(clk)

if (rising_edge(clk)) then

data <= ROM(conv_integer(addr));
end if;
end process;

Listing 4.2: AES S-box instantiation in the BRAM

The idea of obtaining the bitstream encoding of the BRAM content is similar to the approach
of extracting the encoding of the LUT contents. Again, an attacker can create various low-level
hardware configurations, for which he changes all memory values bitwise. For each change, the
bitstream is generated and the corresponding toggling bits are observed. Algorithm 3 shows
a generic approach for extracting the bitstream encoding. Having obtained the encoding, we
verified the correctness for several Xilinx FPGAs belonging to different families. Note that there
are certain setups for the memory layout that can be chosen by the user. We could verify that
the contents of the BRAM can be extracted — regardless of the chosen memory layout.

35

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Algorithm 3 BRAM encoding extraction for Xilinx FPGAs

Input: Low-level hardware configuration low_conf observed from the synthesis/implemen-
tation step of translating multiple instances of the VHDL code in Listing 4.2

Output: Bitstream encoding BRAM _encoding of all BRAM instances allowing to dump
all BRAM contents from any third-party bitstream belonging to one specific FPGA model.

configure_bram_content(a,b) creates a hardware configuration so that the BRAM content is
set to b for the a*® BRAM block on the FPGA grid.

bitstream_bram_zero: Temporary reference bitstream file with zeroized BRAM block.
bitstream_tmp: Temporary bitstream file with BRAM block for which only one bit is set.

—_

: Generate bitstream bitstream_bram_zero from previously synthesized /implemented hardware
configuration low_conf.

2: for bram_block = 0 to NUM_OF_BRAM BLOCKS - 1 do

3 for bit = 0 to NUM_OF_BITS_PER_BRAM BLOCK - 1 do

4 Copy low_conf and apply configure_bram_content(bram_block, 2°%)

5: Generate bitstream bitstream_tmp from previously adapted hardware configuration.

6 Compare bitstream_bram_zero and bitstream_tmp and derive toggled bit position pos

7 Store toggled position BRAM_encoding|[bram_block |[bit] = pos

8

: return bram_encoding

Note that Algorithm 3 has to be executed only once per FPGA device. With the help of
the recovered bitstream encoding (describing the contents of the BRAM), an attacker is able to
extract and modify the contents of a bitstream file.

While the intention of this chapter is not to provide detailed insights into the proprietary
bitstream file format, it illustrates the feasibility of the approach. In summary, this approach
is generic and applicable, using the standard FPGA design flow. The next sections explain
the detection of DES and AES S-boxes whose precomputed output values are commonly dis-
tributed over various LUTs on the FPGA grid. Once the detection is successful, an attacker
can maliciously manipulate a third-party bitstream. Therefore, we evaluate the feasibility of
detecting S-boxes in a third-party hardware configuration for which we assume that only the
corresponding third-party bitstream is given.

4.4 Exploiting Boolean Functions in FPGA Bitstreams

The difficulty of detecting S-boxes in third-party hardware configurations varies with the type of
S-boxes that are used by a block cipher. We found that whenever precomputed S-box tables are
used by a hardware implementation, we are able to fully detect them. If the FPGA’s architecture
uses y-input,l-output LUTs (2¥ bits of available memory each) and z-input,l-output Boolean
functions (2% bits of required memory) need to be placed and routed, two cases may occur:

Case 1 z = y: If z is equal to y, then the whole Boolean function can be implemented in
exactly one LUT. The LUT contents can be analyzed. It is thus straightforward to detect

36

4.4. Exploiting Boolean Functions in FPGA Bitstreams

single z-input,l-output Boolean functions. This is the case for S-boxes of the DES algorithm in
a 6-input,l-output architecture (x = y = 6). We therefore introduce a pattern search algorithm
in Section 4.4.1 that is able to detect all DES S-box instances.

Case 2 x > y: If x is larger than y, then it is a more challenging task to find z-input,l-output
Boolean functions within an FPGA design. Due to the dimensions, one Boolean function must
be split up into g—z LUTs that have to be combined by g—z — 1 multiplexers. We have developed
a search strategy for Boolean functions that exceed the common 16-bit (4-input,l-output) and
64-bit (6-input,l-output) memory limitations of one LUT. This technique is described for the
AES in Section 4.4.4. AES uses 8-input,8-output (eight 8-input,l-output Boolean functions)

S-boxes and thus g—z = 4 LUTs can implement one S-box column within one slice of a Spartan 6

FPGA.

4.4.1 Detection of DES S-boxes

This section covers the detection of DES S-boxes from a third-party bitstream that config-
ures our target device. The DES algorithm is briefly recapped in Section 4.4.3. DES uses
eight different predefined 6-input,4-output S-boxes. Since our target device provides 6-input,1-
output LUTs (64 bits of memory), one DES S-box column! can fit into one 64-bit LUT. There-
fore, one complete DES S-box (4x64-bit columns) can be implemented by four 64-bit LUTs.
Hence, a round-based DES implementation requires 32 LUTs for all eight S-boxes. A general
6-input,4-output S-box is illustrated in Table 4.2. Note that each column, which we refer to as
LUTy, LUTy, LUT,, and LUTj3, stores a unique 64-bit sequence describing a Boolean equation.
These might be the fixed bit-sequences of a DES S-box. Each value a;, b;, ¢;, and d; with
i € {0,...,63} stores exactly one bit.

Input values Output columns
X5 | X4 | X3 | X2 X1 X0 LUTO LUT1 LUT2 LUT3
0 0 0 0 0 0 ag bo Co do
00]0]071]O0 1 a1 b1 1 d
1 1 1 1 1 1 ags b63 C63 d63

Table 4.2: General shape of a 6-input,4-output S-box

To give an example, the four patterns of the first DES S-box are as follows.
m LUTy = (ag3, ag2, -,)y = 0x869D49TABEEET619
m LUT = (b3, be2, -, bo), = OXBOCT871B497826BD
m LUT, = (3, C62, -, C0)y = OX2TEIDA92609F1F29

m LUT3 = (ds3, ds2, ..., dy), = 0x917BE9O66F81BATS

Tt is equal to the LUT content describing one output bit of the S-box. A DES S-box column can be
understood as LUTy = (aes, 62, - . -, a0),, cf. Table 4.2.

37

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Note that each 64-bit pattern is unique for all 32 DES S-box columns. As demonstrated before,
an adversary can learn the bitstream encoding for all LUTSs, thus he can now extract all LUT
contents from a third-party bitstream and analyze the corresponding patterns. The key idea
is that an attacker can try to match all specific DES S-box patterns with all extracted LUT
contents. If there is a match, one S-box column is successfully detected.

Due to the uniqueness of all 64 bits forming a DES S-box column, the likelihood of matching
a false positive, i.e., falsely matching one DES S-box column pattern with an unrelated Boolean
function is negligible. This is because there are 264 = 18 446 744 073 709 551 716 different
possible patterns. In contrast to that, an attacker only needs to test 32 unique reference search
patterns in the best case or 23040 = 720 - 32 in the worst case. During our investigations it
turned out to be insufficient to only match the 32 possible DES patterns with all extracted
LUT contents. The reason is that the truth table bits of a LUT (for example LUT)) are usually
permuted due to permuted input signals, which we also refer to as input permutation as briefly
introduced in Section 2.1.1. Hence, a different input permutation leads to different permuted
truth table patterns within the bitstream. Therefore, a basic pattern matching fails to detect
all DES S-boxes.

The synthesizer always aims at finding an optimal routing path. For this purpose, the router
needs to permute the input signals of most LUTSs, i.e., the input signals of a DES S-box.
Therefore, the previously discussed pattern matching approach needs to be extended. The
LUT content (extracted from a bitstream) has to be considered as a permutation of the search
pattern. The permutation can be computed by a function that we refer to as m,(-). Our further
analysis showed that 7,(-) is computed by the synthesizer as described by Algorithm 4.

Hence, instead of matching one DES S-box column pattern, one needs to test 720 = 6!
permuted patterns. One may think that an attacker needs further knowledge of the FPGA’s
routing to obtain the given unknown input permutation, but this is not necessary, since our
search algorithm can reveal it. In summary, an attacker needs to precompute all possible
permutations for all given DES patterns which are in total 23040 = 32 - 6! and has to compare
them with all extracted LUT contents. The corresponding DES pattern search algorithm is
depicted in Algorithm 5.

4.4.2 Results of DES S-box Detection

Table 4.3 illustrates our ability to locate all DES S-boxes from three tested FPGA implemen-
tations for which we verified that all S-box instances were successfully found. Besides the exact

Impl. | Architecture Found 6-input,1-output LUTs | Detection rate
#1 Round-based 32 100 %
#2 Round-based 32 100 %
#3 Unrolled (16 rounds) | 16 - 32 100 %

Table 4.3: Overview of evaluated DES implementations

location of the LUTs on the FPGA’s grid, we obtained the exact permutation order of the corre-
sponding input pins (without any knowledge of the routing) for every single S-box column. The
obtained knowledge is extremely useful for an attacker, e.g., if EM-based side-channel attacks
are used. Knowing the exact location an attacker can try to locate the best probe position for
the measurement while a target device performs its cryptographic operations.

38

4.4. Exploiting Boolean Functions in FPGA Bitstreams

Algorithm 4 Computation of 7,(-) of the p'' permutation with p € {0,1,...,719})

Inputs: A 64-bit reference LUT pattern that we refer to as LUT[z] € {0,1} with x €
{0,1,...,63}, Permutation index p
Output: The 64-bit pattern of the p*® permutation of a reference LUT pattern

A = get_bit(value, i) returns the i*" bit of value to A
set_bit(value, i) sets the i*" bit of value

1: permutations|[0] = (0,1,2,3,4,5,6)

2: permutations[1] = (0,1,2,3,4,6,5)

3: e

4: permutations|[719] = (6,5,4,3,2,1,0)

5: // Process each input value of LUT individually

6: for input_index = 0 to 63 do

7 // Only if a bit is set a re-ordering must be performed

8: if LUT [input_index] == 1 then

9: // Obtain permuted input position to be set for the permuted pattern
10: input_index_perm = 0

11: for input_column = 0 to 5 do
12: tmp = get_bit(input_index, permutations|p|[input_column))

13: set_bit(input_index_perm, tmp)

14: // Set bit in permuted 64-bit LUT pattern with previously determined input position

15: LUT perm[input_index_perm] = 1
16: Return LUT _perm

The bitstream can also expose information about the utilized architecture of the design.
Knowing the architecture can indicate whether an implementation is round-based, unrolled, or
other cryptographic instances are running in parallel. Note that one can also easily identify the
S-boxes of a 3DES architecture.

A slightly adapted version of Algorithm 5 can also be applied to a 4-input,l-output LUT FPGA
architecture. In this case, we evaluated whether one can also detect the corresponding 4-bit-
to-4 bit S-boxes of the lightweight cipher PRESENT [BKL107]. Again, we could identify all
S-box instances in the bitstream. As long as a Boolean function is known to an attacker and
as long as its patterns do not overlap with the patterns of other Boolean functions, he is able
to successfully find it in the bitstream. In case the S-boxes can be altered by attacker, this
represents a security risk from a cryptographic perspective, since the S-boxes are usually the
only non-linear function of a block cipher. In the next section, we describe how to weaken the
DES algorithm through replacing its S-boxes in the bitstream.

4.4.3 Manipulating DES S-boxes

Since the DES and especially the 3DES algorithms are still widely used, e.g., in financial systems
and SSL/TLS applications, both algorithms represent an attractive target to be weakened in
FPGA bitstreams. Again, to undermine the security of DES, an attacker should be able to

39

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Algorithm 5 Detection of all 8 DES S-boxes being distributed over 32 6-input,l-output LUTs

Inputs: 3"d-party bitstream bs, Bitstream encoding lut_encoding
Output: Flagged LUTs on the FPGA grid that implement DES S-box columns

Sp(z) represent the DES S-boxes with p € {0,1,...,7}

S (x) denotes to the j’th output bit (column) of Spy(x) with j € {0,1,2,3}

m;(+) denotes the i’th permutation out of 720

get_lut_content(-) extracts all 64-bit contents of all LUTs of a bitstream using lut_encoding

1: //Generate DES search patterns

2: for sbox = 0 to 7 do

3: for column = 0 to 3 do

4: DES pattern[sboz][column] = S&lmn(63)[|Scolumn(62)]]. .. ||Splumn(0)
5. //Dump all LUTs from bitstream

6: lut_content NUM_OF _LUTS|« get_lut_content(bs)

T

8: //Search for DES pattern

9: for lut_index = 0 to NUM_OF_LUTS - 1 do

10: pattern_of_interest = lut_content|[lut_indez]

11: for p_index = 0 to 719 do

12: for sbox = 0 to 7 do

13: for column = 0 to 3 do

14: if (pattern_of _interest == m, indez(DES _pattern|sboz][column])) then
15: flag LUT as DES sbox_column(lut_index, sbox, column)

directly modify the bits of the bitstream related to the DES S-boxes. As demonstrated in
Section 4.3.1 and Section 4.3.2, we can easily locate these bits. Figure 4.3 shows the general
Feistel structure of the DES algorithm. The DES algorithm processes a 64-bit plaintext using
a 56-bit main key [NIS99]. Sixteen subkeys are derived from the main key by following a fixed
scheduling plan. The basic properties of diffusion and confusion are realized by the f-function.
Each of the 16 round keys is processed by this function. Figure 4.4 shows the internal structure
of the DES f-function. As can be seen, all eight S-boxes process an intermediate value that has
been previously XOR-ed with a subkey.

The goal is to directly modify all DES S-boxes in a way that a modified ciphertext (computed
by this modified DES) can be decrypted by an adversary without the need of knowing the secret
key. This holds for all plaintext blocks being encrypted by the modified algorithm. The idea of
DES S-box alteration is discussed by Kerins et al. [KKO06], which we briefly present here. If all
S-boxes (Sp, S1, ..., 57) can be modified in such a way that they always output a zero — regardless
of all 64 possible input values — an attacker has successfully performed a malicious alteration
of the DES algorithm. To be more precise, the following modification should be applied to the
DES S-boxes implemented in the FPGA bitstream:

Substitute Sy(z) by S;°(z) =0, Vze€{0,1,...,63},Vpe{0,1,...,7}

40

4.4. Exploiting Boolean Functions in FPGA Bitstreams

plaintext

main Key

i
! KeE Scheduling

state round key

16 rounds

6

THIITE

Figure 4.3: Overview of the DES encryption al- Figure 4.4: DES round function f
gorithm

ciphertext

Due to the proposed manipulation, the whole DES algorithm turns into a key-less permutation.
The modified DES is visible in Figure 4.5. In a normal operating f-function, the S-box outputs

plaintext

[P
—

L[R

canceled

16 rounds

ciphertext
Figure 4.5: Modified DES with canceled f-function

(32 bits) are permuted according to the mapping rules of permutation P, cf. Figure 4.4. The
evaluated result of P is concurrently the output of the function f. Since in the modified version

41

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

all S-boxes outputs are zero, the output of the permutation P is also completely zero. Hence,
the output of the function f is zero, independent of the input and subkey. Because a zero
output of f is XOR-ed with the left state L;, it remains unchanged as XOR-ing a value with
zero is equal to the identity function. Thus, the state after IP(-) is not affected when having
processed all 16 DES rounds. This is because the number of swaps is even. In the end, a final
swap is performed, which is followed by a permutation denoted by IP_l(-).

The following two equations compare the computation steps of a normal DES encryption with
the one of a modified DES-encryption using S ;”O(z’). The modified encryption only applies three
permutations on the plaintext (denoted by p) that can be easily inverted by an attacker.

DESk(p) = IP_l(Swap(Rw’km(. o (Rip, (IP(p))...)))

DESy(p) = IP~! (Swap(IP(p))) = &

An attacker has to perform the following computation to obtain the plaintext from any weakly
encrypted ciphertext ¢:

p =P~ (Swap(IP(¢)))

This attacks works likewise for a manipulated 3DES encryption that is computed as follows
[INIS99]:

—— -1 ——

A plaintext from the modified 3DES with Sjem(i) can also be easily recovered by computing:

p = DES;, (DESy, (DESy, (2))
= IP~(Swap(IP(IP~ ! (Swap(IP(IP ! (Swap(IP(¢)))))))))

——1 —_ ——1
DES, DESk, DES),

In a round-based DES implementation (cf. Table 4.3), an attacker only has to modify eight
S-boxes (or: 32 decomposed LUTSs in a 6-input,l-output architecture) within the bitstream
to significantly weaken the DES algorithm?. The S-box changes were directly applied on the
bitstreams and we verified that the alteration of the design was successful. The presented attack
of the DES algorithm works for both a LUT-based implementation and for an implementation
based on BRAM. Due to the fact that the DES algorithm does not exhibit any inverse S-boxes,
the decryption of faulty ciphertexts will reveal the expected plaintexts. This severe bitstream
manipulation may remain undetected in applications such as data storage, where encryption
and decryption are performed by the same device, or if all ciphers in a given system are modified
in this way. Possible countermeasures include self-tests or integrity checks.

2Potentially more S-box instances have to be modified in the bitstream, depending on the design architecture,
e.g., in an unrolled implementation.

42

4.4. Exploiting Boolean Functions in FPGA Bitstreams

4.4.4 Detection of AES S-boxes

In the following, the detection of decomposed AES S-boxes, which are realized in a 6-input,1-
output architecture, is considered. At first the attacker computes the 8-input,8-output AES
S-box. The decomposition is necessary, because the degree x of the Boolean function is higher
than the number of LUT inputs y. Thus, Case 2 of Section 4.4 holds here. Each of the 8

AES S-box columns represents an 8-input,l-output Boolean function and is stored as a 256-bit
value denoted by (agss, ags4, ..., ap). Such an AES S-box column is similar to the bit-string of

Table 4.2 but is larger (256 bits instead of 64 bits). The AES S-box columns have to be split
up into 4 LUTs each, because one LUT of the FPGA can only store 64 bits. All LUTs are
denoted by LUT; with ¢ € {0,1,2,3} that need to be multiplexed with 2 input bits and hence
the hardware layout requires two multiplexer stages, which are available in one slice . They are
denoted by p1 and ps. The purpose of these two input bits is to select the correct LUT; once
an 8-input value is processed during one clock cycle. Chosing the correct set for computing the
correct output value of one input is realized with the help of 3 multiplexers, cf. Fig. 4.6.

n—| S-boxcol.
w4 pattern1

sszszes rREEEEE f

SLICE

Tuth e

(agay_.ag) |

o s s s B

—
b

»> E :]
X 8 »—— s-boxcol. A &y
- 2 | pattem2 ' 5
ﬂ [o — e ol 8y | |
.]
I CTC 3 I i j]
E - __i____] _____ _E’_‘_'l z
£
5]
= s =
s = et s
(7] S — P Mux

. whoble .
i (3zsdns,. Na1) |

SLICE

n—— S-boxcol. [a
—uq| pattemn 4

L
'
'
'
'
’
'
’
'
'
'
'
[
'
'
'
'
1
o
.
'
.
.
.
H _ Tohaoe
.
.
.
'
.
.
.
'
L]
.
.
L)
.
.
.
'
L]
.
.
.
.
.
.
'
.
.
.
.
.
.
L
L

S
1
—
b

Figure 4.6: Simplified overview of a slice of a Spartan 6 FPGA realizing an 8-input,l-output
Boolean function (256 bits of memory) with four 6-input,l-output LUTs (64 bits of

memory each). Our example implements one S-box output column of AES. Eight
of those instances are needed to implement one AES S-box

The synthesizer has to chose 64 bits from (a2s5, @254, ..., ap) and assigns them to one LUT
which implements the first part of one AES S-box column. Once assigned, the next 64 bits are

assigned to another LUT. In total, this is performed 4 times. An AES S-box column has eight
input bits that we denote by (x7, xg, ..., 9). We pick the most straightforward example that

43

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

can occur to explain how the synthesizer distributes the 256 bit values (a2s5, a2s4, ..., ag) to four
64-bit LUTs. One of the most simple configurations is as follows.

B LUTy = (a2ss, .., a192) selected by (u1, p2) = (0,0)
m LUT, = (algl, ...,a128) selected by (ul,ug) = (0, 1)

m LUT, = (a127, ---, aga) selected by (u1, u2) = (1,0)

(
LUT; = (ags, ---, ap) selected by (u1, pu) = (1,1)
B The multiplexer configuration is p; = x7 and ps = xg

B The remaining input bits (5, x4, ..., ©g) are not permuted

If the multiplexer configuration is chosen differently due to routing optimizations, then the
assignment of (ags5, a2s4, ..., ag) to the lookup-tables LUTy, LUTy, LUTy, and LUT3 has to be
re-organized by the synthesizer. An attacker would observe that the tools proceed as follows:
for each AES S-box input value x € {0,1,...,255}, for which (p1,u2) = (0,0) holds, add the
corresponding S-box bit value a, (one bit of (agss, ..., ag)) to the same 64-bit LUT. There are
64 entries out of 256 for which (i1, pu2) = (0,0) holds. Analogously, this is repeated for the
multiplexer configurations (u1,p2) € {(0,1),(1,0),(1,1)}. Again, the contents of LUT; can
vary due to one out of 6! = 720 possible input permutations. Also, there are (g) possibilities
to pick two multiplexer bits (u1, ue) from (z7, z,..., xg). So there are (2) =720 - 4 = 80640
patterns for one AES S-box column. To be able to search for all 8 AES S-box output columns,
one needs to generate 8 - 80640 = 645120 search patterns in total. Algorithm 6 provides the
necessary steps for detecting all AES S-boxes from the bitstream. Depending on the synthesizer’s
choice for generating and distributing the S-box patterns over the FPGA grid (which cannot
be predicted beforehand), the case may occur that some S-box search patterns may overlap,
i.e., the two generated patterns of the configuration (u; = 0, u2 = 0) for S-box column 1 and
(1 =0, e = 1) for S-box column 2 may equal. If the search is limited to analyzing LUTSs only,
it can be concluded that a part of an AES S-box column is detected, but it cannot be clearly
assigned to which S-box column it belongs to. Note that this is a necessary information for an
S-box substitution attack, where an attacker intends to weaken the AES algorithm. If the goal
is key extraction, then this information is not required as explained later.

However, in our approach one S-box column is successfully detected if all 4 LUTs of one
slice indicate the implementation of the same S-box column as well as the same multiplexer
configuration (p1, p2). Hence, from an attacker’s point of view, it is an advantage that all
four LUTs are placed within one slice allowing to conclude the exact input permutation of any
single LUT. Algorithm 6 reveals any slice implementing an AES S-box column and particularly
to which S-box output column it belongs to. Figure 4.7.a and Figure 4.7.b show two results
for two different AES cores that we refer to as Dy (word-based) and Djg (round-based). More
precisely, it shows the distribution of all detected AES S-box columns over the entire FPGA grid.
As can be seen, we do not only obtain the exact coordinates, but we also learn how many S-box
instances are implemented by an AES core. Given this information, we can conclude whether
the AES implementation is a byte-based, word-based, round-based, or unrolled design which
is valuable information, e.g., if an attacker wants to reverse-engineer a third-party hardware
configuration. Furthermore, one main advantage is that we do not need any further knowledge

44

4.4. Exploiting Boolean Functions in FPGA Bitstreams

SLICE_X0Y6? SLICE_X37Y63 SLICE_X0Y62 SLICE_X37Y6:

mEE
1 5 7
30| 3] ol 4
M| 12
1

s u
a) Detection of 4 S-box instances (32x 6- b) Detection of 20 S-box instances (160x 6-
input,l-output S-box columns) for the input,l-output S-box columns) for the
word-based AES design Dy round-based AES design Diq

Figure 4.7: FPGA grid view of a Xilinx Spartan 6 XC6SLX16, where each cell represents one
slice. It shows the results of the proposed 8-input, 8-output S-box detection algo-
rithm for AES hardware configurations. Any cell containing a number shows that
the " (with i € {0,1,..., 7}) AES S-box output column is implemented by the cor-
responding slice, i.e., it is successfully detected. White cells represent unused slices,
whereas gray cells denote the usage of arbitrary combinatorial logic within one slice,
i.e., at least one out of 4 LUTs is configured

45

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Algorithm 6 Detection of AES S-boxes being distributed over 32 6-input,l-output LUTs

OO0 NN RN NN NN H o s e s e e e
[B L T A - eal = B = e < B A o I el

[\o}
Nej

w w
N =

Input: 3'%-party bitstream bs, Bitstream encoding lut_encoding
Output: Flagged LUTs on the FPGA grid that implement AES S-box columns

S7(x) denotes the j’th output bit (column) of the AES S-box S(x) with j € {0,1,...,7}
m;(+) denotes the i’th permutation out of 720
get_lut_content(-) extracts all 64-bit contents of all LUTSs of a bitstream using lut_encoding

w
= O

//Generate AES search patterns
for column = 0 to 7 do
for (k1,rk2) € {(k1,Kk2) €{0,1,...,7} x{0,1,...,7}: K1 # Ko} do
Set cnt; to 0 for each i € {0,1,2,3}
for z = 0 to 255 do
(1, 12) = (5% (), 8% ()
switch ((p1, p2))

case (0,0): AES_patterng[(k1, s2)][column][ento++] = Seolvmn (z)
case (0,1): AES pattern;[(k1, o)][column][cnt;++] = Svmn (1)
case (1,0): AES patterns[(k1, so)][column][enta++] = Seolvmn (z)
case (1,1): AES patterns[(k1, s2)][column][ents++] = Seumn(z)

end switch

: //Dump all LUTs from bitstream
: lut_content[NUM_OF _LUTS]« get_lut_content(bs)

: //Flag potential AES S-box column parts
: for lut_index = 0 to NUM_OF_LUTS - 1 do

for column = 0 to 7 do
for (k1,k2) € {(k1,k2) € {0,1,...,7} x{0,1,...,7}: k1 # K2} do
for p_index = 0 to 719 do
pattern_of_interest = lut_content[lut_index]
Po = Tp_index(AES_patterng[(k1, K2)][column])
P1 = Tp_index(AES_pattern; [(k1, K2)][column])
P2 = Tp_index(AES_patterns[(k1, £2)][column])
P3 = Tp index(AES_patterns[(k1, £2)]])]
fori=0to 3 do
if pattern_of_interest == p; then
flag LUT _as_AES _sbox_column(lut_index, column, (K1, k2), p-index)

column

: //Remove false positives
. for slice_index = 0 to NUM_OF_LUTS/4 - 1 do

Get any flagged information for all 4 LUTs that correspond to the slice slice_index
Only keep the flagged information for which the value column and the (k1, k2) configu-
ration are identical for all 4 LUTs

about the routing to be able to detect and manipulate S-boxes. Thus, the reverse-engineering

46

4.4. Exploiting Boolean Functions in FPGA Bitstreams

effort is small. Listing 4.3 shows some partial output of Alg. 6 indicating the information, which
can be obtained from a third-party bitstream.

Pattern 1 of AES S-box output column 4 detected in SLICE_X12Y24 and LUT4,
Detected permutation indices (4,3,1,5,0,2)

Detected MUX input wiring (ui,p2) = (zo,z1) or (ui,u2) = (z1,x0)

Found input permutation (zs,s,Z3,Z7,Z2,T4)

Pattern 2 of AES S-box output column 4 detected in SLICE_X12Y24 and LUTg,
Detected permutation indices (0,4,3,2,5,1)

Detected MUX input wiring (ui,p2) = (zo,x1) or (i, p2) = (z1,0)

Found input permutation (z2,s,Zs,Z4,Z7,Z3)

Pattern 3 of AES S-box output column 4 detected in SLICE_X12Y24 and LUT(,
Detected permutation indices (1,3,4,0,2,5)

Detected MUX input wiring (w1, p2) = (zo,z1) or (u1,u2) = (z1,x0)

Found input permutation (1‘3,:1:5,336,332,354,x7)

Pattern 4 of AES S-box output column 4 detected in SLICE_X12Y24 and LUTDp,
Detected Permutation w = (1,3,4,0,2,5)

Detected MUX input wiring (u1,p2) = (zo,z1) or (ui,u2) = (z1,x0)

Found input permutation (zs,zs,Zs,Z2,Z4,T7)

Listing 4.3: Output of Algorithm 6 for AES design Dy. As can be seen, each detected LUT has
the same multiplexer configuration (u1, pe) allowing to filter false positive patterns

4.4.5 Results of AES S-box Detection

For our evaluation, we examined 16 AES encryption designs Dy, D1, ..., D15, four of which were
developed by our group. The other 12 cores have been taken from publicly-available websites,
e.g., NSA homepage, OpenCores, GitHub, SASEBO project®. Each core is provided by an
interface to set the key k and the plaintext p, and to fetch the ciphertext c¢. We developed an
FPGA design template to play the role of an RS-232 interface between a PC and the target
AES core, where the key is kept constant by the template. During the integration of any of the
target AES cores, we did not modify the AES circuitry, but adopted the template to fit to the
sequences required by the underlying AES interface. As an example, some of the AES cores
require first to perform a key schedule, while the others process the actual encryption and key
schedule in parallel.

Most of the designs (Do, Dy — Dy, Dg, Dg — D15) operate on a round-based architecture. D
is based on a word-based architecture, where 32-bit blocks are processed at each clock cycle.
D7 and Dy follow a serialized architecture, i.e., with only one instance of the S-Box, where
at each clock cycle one byte is processed. Finally, D5 is an unrolled pipeline design with 10
separately instantiated round functions, which can give one ciphertext per clock cycle if the
pipeline is full. Hence, we cover a variety of implementation styles. To be able to analyze all
AES cores with Algorithm 6, we generated the corresponding bitstreams to evaluate whether
they can be compromised in practice for which we provide further details in Section 4.4.6. The
S-box detection results are given in Table 4.4.

3D0 [MiClO], Dy [Jerll], D, [Fek14], Dy [Heml4], D5 [Tar13], DG [M0t13], D10 [NSAQQ], D11-D15 [AkaO?]

47

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Usage of precomputed S-boxes Usage of S-box Circuit | Countermeasure of Section 4.5
AES Design Dy D, D, Dy Ds D7 Dy Dy | Dy Dis | Dg | D12 | Di3 Dyy D3 Dy
S-box columns (LUTs) | 32 0 32 160 | 1024 8 8 160 0 32 0 0 0 0 0 32
S-box inst. in LUTs 4 0 4 20 128 1 1 20 0 4 0 0 0 0 0 4
S-box inst. (BRAM) 16 5 16 0 32 0 0 0 20 16 0 0 0 0 0 0
> S-box instances 20 5 20 20 160 1 1 20 20 20 0 0 0 0 0 4
Detection rate 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 0% | 0% | 0% 0% 0% 25%

Table 4.4: Overview of evaluated AES implementations

As can be seen, an adversary would be able to successfully attack all third-party AES cores
which use precomputed S-boxes. From these 10 AES cores, 4 (D4, D7, Ds, and Djg) can be
compromised only by detecting LUT-based S-boxes. Regarding the other AES cores, one needs
to additionally analyze the BRAM content. Only two AES cores (D; and D;;) implement all
AES S-boxes in the BRAM, while the remaining ones (D, D2, D5, and D;5) make use of both,
distributed LUTs and BRAM instances. Note that there are various possibilities to implement
an AES S-box in an FPGA design and thus the presented detection method does not always
lead to a successful finding. Hence, a limitation of Algorithm 6 is that it cannot detect AES
S-boxes, which are implemented as computational on-the-fly circuit. This is the case for the
AES cores Dg and Do — D14. Even if an attacker would be able to extract the entire routing
information from a bitstream (which is out of the scope of this thesis and attacker model), it
remains unclear whether and how the relevant S-box regions can be reliably detected from the
hardware configuration: neither can an attacker search for specific patterns nor is he able to
predict how the S-box circuit is built and distributed over the FPGA grid by the synthesizer.

Nevertheless, our results indicate that the majority of AES implementations make use of
precomputed AES S-boxes in order to achieve a higher performance. Hence, it is likely that
an attacker can compromise an AES core in practice. We practically verified the correctness of
bitstream manipulation, as we were indeed able to extract the secret key from the manipulated
hardware configuration.

After having presented all necessary detection steps and providing the corresponding evalu-
ation for various AES S-boxes, we describe the AES manipulations easing a practical attack.

4.4.6 Manipulating AES S-boxes

In this section, we present further analysis regarding malicious AES manipulations being con-
ducted on FPGA bitstreams. Note that the AES algorithm is briefly introduced in Section 2.3.
As described in the previous sections, we are able to detect S-box instances by analyzing the
corresponding bitstream of an FPGA. Similar to DES, an attacker may be able to silently
weaken the algorithm such that the encryption and decryption are still compatible, but the
corresponding ciphertexts are cryptographically weak, cf. Section 4.4.6. Furthermore, a key
leakage approach is introduced in Section 4.4.6.

Implanting an AES Trojan by Replacing Distributed Precomputed S-boxes

When setting all AES S-box instances to the identity mapping as described below, the encryption
and decryption function turn into a linear bijection. The corresponding altered AES-128 (that
we refer to as ¢ = Esk(p)) does weakly encrypt plaintexts and decrypt the weak and modified
ciphertexts, hence they are vulnerable to crypt-analytical attacks.

Substitute S(z) by S*(z) =z, Vz € {0,1,...,255}

48

4.4. Exploiting Boolean Functions in FPGA Bitstreams

Given one known plaintext-ciphertext pair (p, ¢), an attacker is able to decrypt all other faulty
ciphertext blocks, because AES(-) can be described as:

c= AESk(p) = SR(.. MC(SR(p S¥ T’k‘o) D Tkl) ..) @ rkig
= SR(.. MC(SR(])) ..)) ® SR(.. MC(SR(T]{J()) © 7“]-61) ..) @ rkig

=K

= SR(...MC(SR(p)...)) & K

The equation above holds, because the MC/(-) and the SR(-) functions are linear as described
below.

Va,b 4 x 4 matrices with elements € GF(2%) :
MC(a®b) =MC(a)d MC(b)
SR(a®b) = SR(a) ® SR(b)

It is important to understand that the XOR sum of all processed subkeys is constant and can be
expressed by one variable K. In addition, the number of MC(-) and SR(-) operations depends
on the utilized AES key size, i.e., 128, 192, or 256 bits.

Once an attacker can obtain one plaintext /ciphertext pair (p, ¢) of the manipulated AES, he is
able to compute the secret K. For this purpose, he simply reconstructs SR(... MC(SR(p)...)),
and then computes the following;:

K =¢@ SR(... MC(SR(p)...))

With the knowledge of K , an attacker can recover any plaintext = from any faulty ciphertext y.
To do so, the adversary has to XOR the value y with the previously recovered secret K.
Afterwards, the MC(-) and SR(-) transformations have to be inverted. Algorithm 7 provides
the necessary step to decrypt a weak ciphertext .

Algorithm 7 Decryption of ciphertexts that were encrypted with S(-)

Input: Ciphertext 7 from a modified AES with S?(-), one previously obtained (p,¢) pair
Output: Plaintext x corresponding to ¥

1: K < ¢®SR(... MC(SR(p)...)) // Calculate K
2: <+ y® K // Cancel secret K
3z SR (MC Y SR™Y(...MC~Y(SR™(y)...))))) // Apply inverted AES operations

Note that this attack works regardless of the key schedule (AES-128, AES-192, and AES-256)
once an attacker manages to alter all SubBytes S-boxes, because the secret K can be canceled
in any case. It also does not matter whether any S-box of the key schedule is altered or not.
We practically verified the feasibility of this attack by applying the S-box manipulation directly
to the bitstream file. The manipulated AES core yielded a weakened ciphertext, which we
successfully decrypted with the help of K.

49

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Key Recovery of AES by Clearing Distributed Precomputed S-box Tables

Analogous to the DES modification of Section 4.4.3, all AES S-boxes in the FPGA bitstream
can be altered to always output a zero — regardless of the input value. This kind of modification
is also presented by Kerins et al. [KK06], which we tested for Xilinx FPGAs. The modification
is described in the following equation:

Substitute S(x) by S**"’(z) =0, Vx € {0,1,...,255}

Obviously, after having altered all S-box instances in this manner, the AES algorithm becomes
unusable. That is, because any information regarding the plaintext is lost, right after the first
SubBytes step has been processed by the modified AES instance, hence the cipher is not bi-
jective anymore. However, such an alteration is still useful for an adversary since the output
of the AES is now the last subkey rkig from which the main key rky can be computed and
verified by one plaintext-ciphertext pair (p,c). This is done by testing whether the computa-
tion AESk_ely hypothesi s(c) outputs the correct plaintext p.

This is for example useful in all scenarios, where the underlying non-accessible main key rkq
is hard-coded in the FPGA design. Another imaginable scenario is a main key rky which is
securely transfered to the FPGA after power-up, e.g., by a Hardware Security Module (HSM)
whose data bus cannot be eavesdropped. Then, an adversary can obtain the key by querying
the modified AES instance with an arbitrary plaintext.

Since the S-boxes of the key schedule are usually not distinguishable from the SubBytes S-
boxes, the previously discussed modification should be conducted on all S-boxes, including those
from the key schedule. In the following, we have a look at the potential manipulation cases.

Manipulation Possibilities for AES-128

In the case of AES-128, the main key rkg can be fully recovered if an attacker accomplishes
specific manipulations to the AES S-boxes which are encoded within the bitstreams. In order
to better understand Algorithm 8, the AES-128 key schedule is depicted in Figure 2.10 in
Section 2.3. Furthermore, if the attacker is able to collect one faulty ciphertext ¢ by querying
the manipulated AES core with one arbitrary plaintext p, the steps described in Algorithm 8
will lead to key recovery. In order to successfully mount a key recovery attack, two out of three
thinkable S-box manipulations are helpful to ensure a successful key recovery:

Manipulation 1 - Only key schedule S-boxes are replaced by S*"°(z): After the key schedule
finished its computations, all valuable information is lost regarding the AES key. Therefore, even
if this manipulation is achieved, the adversary cannot recover rkgy from the faulty ciphertext ¢.

Manipulation 2 - Only SubBytes S-boxes are replaced by S**"°(x) : This may be the case
if the function ¢(-) does not utilize precomputed AES S-boxes for some reason. In this case,
Algorithm 8 directly reveals the main key rkg, once the attacker records the faulty ciphertext c.

Manipulation 3 - SubBytes and key schedule S-boxes are replaced by S*°"°(x): This is the
most likely case. In this case, the g-function only returns the corresponding round constant

50

4.4. Exploiting Boolean Functions in FPGA Bitstreams

Algorithm 8 Reconstruction of the full main key of AES-128

Input: Faulty ciphertext ¢ from manipulation AES with S%¢"°(x)
Output: Fully recovered 128-bit AES main key rkq.

//Process faulty ciphertext ¢ (= last round key)
1: for i =0to 3 do
wl43 —i] = y[3 — 1]
//Invert the 128-bit key schedule
for ¢ = 39 to 0 do
if i %4==0 then
wli] = wli + 4] & g(w[i + 3])
else
wli] = wli + 4] ® wli + 3]

»

RCJi], also padded with three zero bytes. Code line 5 of Algorithm 8 should then be changed
to

w(i] = w(i+ 4] ® RC[{]

in order to reveal the main key rky. Therefore, both variants should be tested when trying to
recover the key.

Manipulation Possibilities for AES-192 and AES-256

Compared to AES-128, the algorithm AES-192 and AES-256 only leak the parts of the main
key rko under special conditions. We discuss only the two most interesting manipulation cases.
For a better understanding, the graphical representation of the AES-192 key schedule function
is shown in Figure 4.8.

Manipulation 1 - Only all SubBytes S-boxes are replaced by S*“"°(z): Not any single byte
of the main key rky can be recovered, if this manipulation is accomplished by an attacker. This
fact also holds for AES-256. Figure 4.8 reveals why this is the case by showing the computable
words (white background) and non-computable words (gray background) when trying to invert
the AES operations of ¢. If the round keys are calculated utilizing normal AES S-boxes, then for
instance, w[42] cannot be calculated from the faulty ciphertext ¢. This is because the output of
the last g-processing is unknown to an attacker. Therefore, in the set of w[36] — w[41] only the
words w[38] and w[39] are computable. The other intermediate values belonging to the same
set cannot be computed, because w[42], w[46], and w[47] are unknown. The last possible word
that can be computed is w([33], but it does not reveal any information of the main key rkj.

Manipulation 2 - All SubBytes and key schedule S-boxes are replaced by S**"°(z): This
is the preferable case, since the first 128 bits of the AES-192 (AES-256 respectively) main key
rko can be derived. The g-function returns the round constant value RCJ[i], if all S-box outputs
yield a zero byte (for every input), cf. function g of Figure 2.10. Hence, w[42] can be derived

51

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

[wo [win [wig | wi [wig [ws) |
OF : o)

—®

-—u'(:\

T "_,U

[W | w7 | wag | wlsl [wuol [wml]

W36] wisrl wiss] | wize) | wiao) | wian

P4
O
> ﬁ\y
42| [(wian | wissi [wiaa west | s ‘4?1
G\
—®

hY
+)

e[wag | w'[:s] | wiso | wisy |

Figure 4.8: Key schedule of AES-192

and all the first left 4 words of each subkey of the key schedule step are computable. Even if
the right part is not known, the first 4 words w[0] — w[3] can be computed, cf. Algorithm 9.

Algorithm 9 Partial key reconstruction of AES-192/256

Input: Ciphertext y from modified AES with S*¢"°(x)
Output: First 128 bit of 192/256 main key

Ny < 51 for AES-192 (+ 59 for AES-256)
Nj <— 6 for AES-192 (< 8 for AES-256)

//Load the ciphertext (= last round key)
1. for i =0to 3 do
2: w[Ny — 1] = g[3 — 1]
//Invert the KeySchedule
3: for : = N, to 0 do
4 if ¢ mod N, > 4 then
5: continue
6: if ¢ mod N, == 0 then
7 wli] = wli + Ni| ® RC[i]
8 else
9 wi] = wli + Ni] @ wli + Ny, — 1]

52

4.5. Mitigating S-box Substitution Attacks

To be more precise, the first 128 bits of each subkey can be recovered. Therefore, in this case,
an attacker can obtain the first 128 bits of the main key of AES-192 and AES-256. The other
words (64 bits) of AES-192 and AES-256 (128 bits) cannot be computed. Having discussed the
attack vectors, the next section covers several countermeasures and proposes one concrete one
to mitigate the introduced S-box substitution attack.

4.5 Mitigating S-box Substitution Attacks

In this section, we do not only discuss potential countermeasures that may be deployed in order
to raise the bar for an adversary, but we also propose a concrete one and evaluate its costs in
terms of hardware area. Remember that in our attack model the adversary can only analyze
and modify the LUT content and the BRAM content of an FPGA bitstream, i.e., the parts of
the hardware in which cryptographic S-boxes are implemented. The countermeasures are based
on obfuscation. In general, every obfuscation strategy helps to defeat this kind of modification
attack, but if a strategy is known to an attacker, it may be circumvented again. In the following,
several ideas and their drawbacks are presented.

4.5.1 Built-In Self-Test

Built-In Self-Tests are a well known concept to test different kinds of faults and circuits. A simple
integrated self-test can be used to defeat the attacks presented in this work. For example, one
can check if the algorithm outputs the correct ciphertext for a fixed key and plaintext. Such
a self-test can be circumvented, however, by a more powerful adversary with the following
approaches:

B The integrity value has to be stored in the FPGA bitstream. Thus, an adversary may be
able to identify and modify this value.

B The adversary could disable the self-test or modify it in such a way that the test routine
marks the test as “passed”.

4.5.2 Decomposition of Larger Circuits into Smaller Ones

Another approach targets decomposed LUTs. They are detectable because of their character-
istically non-linear patterns. Security-critical Boolean equations, generating the LUT contents
for the S-boxes, should be difficult to distinguish from other linear LUT content patterns to
defeat detection and consequently modification of these parts. One possible way to achieve
this is to further decompose the LUTs along the Disjunctive Normal Form. For example, in a
6-input,l-output architecture, a 64-bit LUT content may be split-up into 8 LUTs. The output
of each LUT can be OR-ed together to compute the original LUT content.

To give an example, assume a Boolean function f(a,b,c) = abV bc V abe. Suppose that this
Boolean function is realized in one LUT. Following the idea described above, this LUT is
separated into three LUTs:

fila,b,c) = ab
fa(a,b,c) =be
fa(a,b,c) = abe

53

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

The result of every function f; is then OR-ed. Thus, it should be more difficult to identify
f1, f2, and fs, if this function splitting scheme is unknown to an attacker. Nonetheless, the
decomposition to multiple LUTSs has also a drawback. An adversary can search for the hardware
part where the OR-ing of all f; functions is processed. In a test implementation, we observed
that one LUT is used to implement the corresponding OR, function, hence an adversary could
modify this LUT. For a targeted alteration to an identity mapping, e.g., in the case of AES,
the adversary would need to trace back the path to the f; functions with the help of routing
information.

Even when the set of candidates is too large for an adversary, it is likely possible to obtain the
correct set of LUTs belonging to the S-box. The attacker’s effort depends on the decomposition
method and the corresponding parameters. It might be more challenging for an attacker, if the
decomposition of the LUT content is chosen randomly for each S-box column.

4.5.3 Proposal for Partial Self-configuration Countermeasure Scheme

To mitigate the presented S-box substitution attack with respect to Xilinx FPGAs, it is partic-
ularly important to protect the SubBytes layer against hardware configuration manipulations.
The following countermeasure proposal can impede static attacks, which attempt to identify
and alter precomputed AES S-boxes in a deterministic manner. Note that no potential round
counter, state machine, or data bus manipulations, etc. are covered by this countermeasure.

A very powerful adversary could, of course, manage to inject more sophisticated backdoors,
again leading to the loss of confidentiality. However, this task requires considerably more efforts
with respect to design reverse-engineering and hardware configuration alteration.

The strategy behind our proposed countermeasure is to significantly increase the reverse-
engineering efforts for an attacker (using static analysis) through obfuscating the known S-
box patterns. Our raise the bar countermeasure hides the precomputed S-box values in a
cryptographic manner, thus an attacker is not able to easily detect and modify any S-box value
in a predictable fashion.

Key Idea of the S-box Protection: The high-level idea of our approach is to instantiate an
initial hardware configuration i) with a slightly modified AES core that we refer to AES and
i1) a fixed initial key kq. This variant uses an arbitrary 8-input,8-output S-box instead of the
original AES S-box. The same slightly modified AES core is implemented in software, which is
used to generate ciphertexts of the actual AES S-boxes using the same key k1. The resulting
ciphertexts are embedded as part of the initial hardware configuration. On boot-up of the initial
hardware configuration, the S-box is recovered with the help of the modified AES core using
k1. In the last step, the initial hardware configuration itself updates its random S-box to the
correct AES S-box.

To implement the above mentioned workflow, in the first step a random bijective S-box is
determined using a software application before the hardware configuration is designed. Once
the random S-box is determined, the same software application decrypts the correct AES S-box
values by using the inverse AES operation, i.e., ¢ = ZE,/SI;I (AES S-box). In this context, we
also refer to ¢ as ciphertexts. Having obtained ¢, it is integrated as part of the initial hardware
configuration, i.e., the ciphertexts ¢ are distributed over the available LUT memory. Once AES
is configured after powering the FPGA, the goal is to dynamically replace the random S-box

54

4.5. Mitigating S-box Substitution Attacks

with the original AES S-box, so that a true AES core can perform the actual encryption of
data (using another fixed key kg). By following this approach, the correct S-box values are only
dynamically available and cryptographically hidden for an attacker who only statically analyzes
the design and searches for the correct AES S-box in the initial hardware configuration. Note
that the ciphertexts ¢ may be more easily identified if they are stored in the BRAM and not in
the FPGA’s distributed LUT memory. After FPGA power-up, the hardware configuration starts
to recover the correct AES S-box. This is carried out by the initial hardware configuration itself
by encrypting® the ciphertext ¢, i.e., by computing AESy, (¢) and hence inverting the conducted
steps of the software application. Having obtained the AES S-box in the explained manner,
the initial hardware configuration starts to replace the random and bijective S-box by using the
dynamic reconfiguration feature of Xilinx FPGAs.

To implement our proposed countermeasure, we make use of dynamic look-up tables that
can be changed during runtime of the FPGA, i.e., only by the FPGA configuration itself.
Additionally, we implemented an AES design using BRAM to support smaller FPGA devices.

Dynamic LUT reconfiguration is used as a building block for our countermeasure. This feature
is supported by several Xilinx FPGA families, in particular we implemented the protection
scheme utilizing a Xilinx Spartan 6 device. Since we only provided a rough description of the
countermeasure, in the following we present its work-flow in more detail. Our scheme makes
use of so-called CFGLUTS5 primitives, hence they are first briefly introduced.

Building Block, Xilinx CFGLUTS5
Xilinx provides a dynamic LUT primitive called CFGLUT5 (5-input, 1-output LUT), cf. Fig-
ure 4.9 and Figure 4.10.

CFGS5 LUT CFGS5 LUT
CLK €bQ CLK —— coQ
CE " fi D Ly R U ini CE ¥ f e T U
co1) ") e o b e
X xR % X X XK X

Figure 4.9: Initial LUT with Boolean Figure 4.10: Reconfigured LUT with
function finit Boolean function f

Fig. 4.9 illustrates the initial state of a CFGLUT5 (directly after FPGA power-up and initial
configuration), while Fig. 4.10 depicts the reconfigured state. The finiy Boolean function output
values are encoded in the FPGA bitstream, whereas the Boolean function output values of f
are reconfigured during runtime. Note that only five instead of six input pins are available,
since one pin (CFE) decides when to update a LUT content.

Reconfiguration of CFGLUT5 Elements
Three input reconfiguration pins are available for this hardware element. The CDI pin handles

4One main advantage of decrypting the true AES S-boxes for the initial hardware configuration (instead
of encrypting as one would expect) is that the hardware configuration only needs to implement the encryption
function to be able to recover the true AES S-boxes during power-up of the FPGA. This is an advantage for
specific modes of operation such as the counter mode where only the underlying encryption function of the
AES core needs to be implemented. Hence, one can avoid the implementation of the decryption function in the
hardware configuration to reduce its costs in terms of hardware area.

55

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

the new LUT content data or functionality. The CFE pin needs to be pulled high to activate
or keep the reconfiguration process running. The clock is used to configure the current data of
the CDI pin. The 5-input,l-output Boolean function f is coded by 2° = 32 output values that
are being shifted bit-wise for updating the functionality. Two output pins are provided by the
CFGLUTS: through the CDO pin, the old configuration data can be read out and the other
output pin provides the evaluation of the Boolean function f.

Memory Organization

The memory organization of our countermeasure is explained with the example of the AES S-box
S(x) even though it initially configures the random S-box that is denoted by S(z). Regarding
the AES block cipher, an 8-input,8-output S-box instance can be implemented using 2048 bits
(= 2% inputs - 8 bits) of memory. The general shape of an 8-input, 8-output AES S-box is
depicted in Table 4.5. Note that a;, b;, ..., h; with ¢ € {0,1,...,255} store one S-box bit value
each. The AES S-box call S(z) with x = (z7,zs,...,20) can also be expressed as 8-bit value

Input values z = (27,6, ..., o) S-box output S(z) = S(z)||S?(x)]|...[|S8(x)
x7 ‘ Zg ‘ Z5 ‘ T4 ‘ x3 ‘ X9 ‘ X1 ‘ zo | S'(x) ‘ S?(x) ‘ S3(z) ‘ S4(x) ‘ S5(x) ‘ S6(x) ‘ S7(x) ‘ S8(x)
0 0 0 0 0 0 0 0 ap bo Co d() €0 fo go }LO
0O|lo0j]O0O|O0O]O0]O0]O0]1 ar b c1 dy el fi 91 hy

11|11 1] 1| 1| 1] ass bass €255 dass €255 fos5 9255 hoss

Table 4.5: General shape of an 8-input,8-output AES S-box.

such that S(x) = S1(x)||S?(z)]|...||S8(z) = az||bs]|...||hs, where || denotes a concatenation.
We further refer to the i*" S-box column as S?(z) with i € {1,2,...,8}. For example, the second
S-box column S?(z) is described by the bit pattern bg||b1|| ... ||ba2ss, so that the correct output
bit value can be retrieved for a given input z. Since our goal is to design a countermeasure
relying on distributing the S-box output values (a;, b, ..., h;) over various CFGLUT5 elements
(32 bits of capacity), for each S-box column S*(x) we need to divide its 256-bit pattern into 32-bit
subpatterns. To be more precise, one AES 8-input, 1-output (256 bits of memory) S-box column
is divided into 8 individual 5-input, l-output (32 bits of memory) subfunctions. We further
introduce S; with j € {1,2,...,8} that describes the ;' 32-bit pattern of the i*" S-box output
column. To give an example, S7 describes the 32 bits bsa.(j—1)|[bs2.(j—1)41 - - - ||b32j—1, while
5]8 targets the h32.(j_1)+1|’h32‘(j_1)|| e ||h32.j,1 bits. In total, 64 = % CFGLUTS primitives
need to be instantiated to store one 8-input,8-output S-box truth table. We propose to connect
each of the 64 CFGLUTS5 elements together in a consecutive chain and to multiplex each of
the 8 CFGLUTS5 (implementing one S-box column) instances with three selection bits (z7, zg, z5)
allowing to select between 23 = 8 these CFGLUTS5 primitives, cf. Fig. 4.11. Furthermore, the
remaining five bits (x4, 3,...,20) picks the appropriate output bit of one S;(;r;) CFGLUTS
element (not shown in Fig. 4.11). Hence, the shown hardware structure of Fig. 4.11 implements
S(x). Note that the scheme makes use of a 1-bit reconfiguration data bus, and therefore, the
entire 8-input,8-output S-box can be replaced by using 2048 clock cycles.

Having introduced the basic hardware layout, in the following, each step from system design
to FPGA power-up is described to present the concept in its entirety.

56

4.5. Mitigating S-box Substitution Attacks

Phase | — System Design

During the system design phase, the following steps have to be carried out: first, a random 8-
input, 8-output S-box S(z) and its inverse S(z) have to be generated by a software application.
Then, a so-called reconfiguration key ki has to be chosen and the correct AES S-box values (256

—~ 1
bytes) have to be decrypted with AES) ~ (for which the original AES S-box was replaced by

the random and bijective S-box S(z)). Since 128 bits need to be decrypted at the same time,

. 2048
we propose to perform the decryption of 16 = 55¢° blocks as follows.

———1
G = AESy, (px), with k€ {1,2,...,16}

A 128-bit input py, which exhibits one part of the original AES S-box S(z), is merged with four
32-bit S-box patterns in the following manner:

_fsEsE sty sEl koaa

Pr = 5 S " &
55[21 I 5(21 H S[z_l H Sé£2—|

6 7 , k even

Fig. 4.11 shows how the exact inner workings of the dynamic AES core and particularly that
the decrypted AES S-box values (¢j) are stored as part of the hardware configuration. Note
that in Fig. 4.11 the beginning of a dotted arrow indicates the initial state, while the end of the
dotted arrow shows the final reconfigured hardware configuration.

c
P A
Decrypted S-Boxes k2 One AES core Encrypted S-Boxes in Memory |
p1=S"115."11S5'11 S4* & ‘
P1 1 118271155711 Sa » Reconfigured ks
P2=Ss'1186'11S," 11 88" AES,(p) ¢
ETI
8 1c8 18 8 < @ Ini;ial < @ ~
P2=5s 1156 |1S7 11S v Erva— ~ ~ o~ c
P2=Ss |Ss |1S7 || Se S B — B AES., (&) & S oo Eon 16

CFGLUTS CFGLUTS | i [cFGLUTS CFGLUTS |: i [cFGLUTS CFGLUTS |:
T T : - T 7 : - E 3 :
.1 ") 51 : 1 ') S]_ : 1 ") 51 \
CFGLUTS CFGLUTS | CFGLUTS CFGLUTS |: CFGLUTS CFGLUTS |: | 3
21 ‘) 521 22 ') 522 - 23 ‘) 523 "" E
¥ v v K
Il § : Y : ¥)
CFGLUTS CFGLUTS |; CFGLUTS CFGLUTS |; CFGLUTS | [cFGLUTS /
A BT A S A S B
_____________________________________ Xe e e
[Xz | Xz Xz

Figure 4.11: Dynamic reconfiguration of AES S-boxes using CFGLUTS5 elements

57

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

Phase Il — FPGA Power-Up o
Directly after the FPGA power up, the 16 ciphertext blocks ¢, are encrypted by p, := AESy, (¢x)
to recover the valid AES S-box values. Second, all S () instances are dynamically reconfigured
to S(z) (utilizing the values p,;) from the previous step. After this process, the AES core turns
into the correct AES core. Finally, the reconfiguration key k; is set to the data encryption key
ko. This way, static manipulations are more challenging for an attacker, as the search patterns
of a valid AES S-box are stored as encrypted data within the hardware configuration. When
assuming that an attacker can locate the corresponding ciphertexts, meaningful and targeted
manipulations are still limited.

We now examine the performance and utilized hardware area of our dynamically reconfig-
urable AES core.

Backwards Compatibility

Since not all Xilinx FPGA families support dynamic CFGLUT5 elements, we also implemented
a similar approach that instantiates S-boxes using BRAM instead of dynamic LUTs. Due to
similarity with the LUT-based scheme, the BRAM implementation is not further explained,
although its resource usage is provided.

For performance and hardware area evaluation we used the same synthesis options (using
Xilinx ISE 13.2) for each FPGA implementation and verified the functionality on a Spartan 6
FPGA board (SP601 evaluation kit with a XC6SLX16). We compared three different imple-
mentation strategies: (unprotected) static S-boxes in LUTSs, (protected) S-boxes instantiated in
CFGLUT5 memory, and (protected) S-boxes instantiated in BRAM. The results are depicted in
Table 4.6. The amount of utilized slices, LUTs and flip-flops, etc. refer to a single instantiation
of one AES. Each design contains a UART core due to the communication interface that is
required for verification.

Table 4.6: Static LUT-based / dynamic DES and AES designs

Design | #Slices | #FFs #LUTs #RAMBs Fmaz
6-to-1 | 5-to-1 | Sh-Reg. | 8 | 16 | (MHz)

AES
Static LUT 1256 1619 3410 332 1] - - 203
Dyn. CFGLUT5 1371 4065 1848 1376 1130 | - - 211
Dyn. BRAM 451 1444 1234 346 1116 4 238

The performance of the AES implementations varies moderately. The larger amount of flip-
flops (approximately a factor of 2.5) and shift-registers in the dynamic CFGLUT5 design, com-
pared to the static LUT-based and BRAM designs, is due to storing the ciphertexts and the
additional wires of all CFGLUTS5 elements. The increased combinatorial hardware area over-
head is mostly due to the smaller utilized 5-input, 1-output LUTSs, where the amount of LUTs
(storing precomputed S-boxes) at least doubles.

Brief Discussion of Dynamic S-Box Reconfiguration
Our proposed scheme is supposed to counterfeit an adversary who is capable of identifying and
subsequently altering the original AES S-boxes in a given hardware configuration through LUT

58

4.6. Conclusion

or BRAM manipulation. This is currently one major threat in many real-world settings, because
finding a given 8-input,8-output look-up table is a reasonable task. Considering the assumed
capabilities of our adversary, it seems not possible to directly and selectively manipulate the
original AES S-boxes to an arbitrary chosen Boolean function, e.g., to the identity function
f(x) = x. Various practical hurdles need to be managed in terms of a meaningful S-box
manipulation that leads to a weakened AES core. Some of them are as follows:

® An attacker cannot easily identify one or several parts of the ciphertexts (distributed as
random unknown pattern in the LUTs and consequently in the bitstream). Even if he is
able to locate them, any manipulation of the ciphertext will lead to the configuration of
an unknown and probably non-bijective random S-box configuration being incompatible
to the AES decryption function. Further, it remains unclear whether the conducted non-
deterministic manipulation leads to a cryptographically weak AES version. Depending on
the utilized block cipher, the adversary would be required to also indirectly manipulate the
inverse S-box accordingly to ensure that the encryption and decryption are compatible.

m The initial randomly configured bijective S-boxes cannot be easily located (distributed as
random unknown pattern in the LUTs and consequently in the bitstream). Even if an
adversary is able to locate and replace them, it can be expected that random S-box values
will be configured, again making the decryption and encryption incompatible.

To sum up, our countermeasure can prevent an adversary to inject cryptographically weak
S-boxes, cf. Section 4.4.6. Note that our scheme is applicable to arbitrary S-box functions.
After we proposed our countermeasure scheme, the prevention of key recovery seemed to be
solved as well, but as a negative result it turned out that the AES key can still be recovered
through following a different technique, which works under our specified attacker model. This
new technique is described in Section 6. From this finding, we conclude that obfuscation alone
does not provide the desired security level.

4.6 Conclusion

In the first part of this chapter, we demonstrated how to detect and maliciously manipulate
cryptographic S-boxes within Xilinx bitstreams that encode cryptographic circuits such as DES,
3DES, and AES in order to weaken their strong cryptographic properties. We assumed a realistic
practical setting, i.e., that an unknown third-party bitstream is in possession of an adversary
who tries to exploit the encoded cryptographic circuit. One of the key insights is that in many
practical situations an adversary does neither need to possess any high-level design information
such as routing details nor does she need to reverse-engineer the entire bitstream file format
encoding to be able to significantly weaken cryptographic primitives or to recover cryptographic
keys. As long as a Boolean function is known to an adversary and is specific, the presented
attacks (relying on LUT and BRAM manipulations) are practically feasible and pose a serious
threat for several real-world applications. We demonstrated the practical feasibility for 10 out
of 16 tested AES cores and for 3 out of 3 tested third-party DES cores. An attacker can decrypt
all ciphertext blocks that were weakened due to the manipulated hardware configurations. The
DES becomes a key-independent permutation that can be inverted by an adversary without
any further information. Compared to that, the AES was manipulated in two ways: the first

59

Chapter 4. Targeted Bitstream Manipulation Attacks Against Reconfigurable Hardware

bitstream alteration turns the AES into a linear function and thus all further ciphertext blocks
can be decrypted with only one known plaintext/ciphertext pair. The second manipulation
leads to a (partial) key leakage of AES-{128,192,256}. The presented results highlight the
importance of integrity checks and that further security mechanisms must be deployed as a part
of the hardware configuration, e.g., an internal difficult-to-patch self-test. This work should
raise awareness that an attacker can indeed meaningfully manipulate proprietary bitstreams by
purpose with moderate efforts. It is important to carefully check an intellectual property core
before using it in security applications.

In the second part of this chapter, we proposed a countermeasure that can mitigate an S-
box substitution attack leading to an FPGA Trojan. During further research investigations
(cf. Chapter 6), we found that the scheme is still vulnerable to key recovery. Hence, obfuscation
alone does not represent an appropriate solution.

To further highlight the practical relevance of this attack vector, we demonstrate the first
practical third-party Xilinx bitstream manipulation used by a commercially available high-
security USB flash device from Kingston, cf. Chapter 5.

60

Chapter 5

Real-World FPGA Trojan Insertion into a
Commercial High-Security Encryption Device

To the best of our knowledge, this is the first demonstration that bitstream manipu-
lation can severely impact the system security of a real-world device.

Contents of this Chapter

5.1 Motivation e 61
5.2 Proceeding of Inserting an FPGA Trojan 62
5.3 Real-World Target Device 63
5.4 Building the FPGA Trojan 68
5.5 ARM Code Modification 0000 70
5.6 XTS-AES Manipulation and Plaintext Recovery 72
5.7 Summary of Security Problems L. 74
5.8 Conclusion 75

5.1 Motivation

As part of the revelations about NSA activities [Snyl4, Grel4], the notion of interdiction has
become known to the public: the interception of shipments to manipulate hardware with the goal
to silently install backdoors. Manipulations can occur on firmware or at the hardware level. As
shown in Chapter 4, Xilinx FPGAs are particular interesting targets as they can be easily altered
by replacing the corresponding bitstream. In security products, an FPGA is often one of various
integrated components on a PCB similar to ASICs, which function as a trust anchor for an
embedded device, e.g., to securely store cryptographic keys. Thus, usually several components
are integrated on the same PCB implementing security features. Therefore, to compromise an
embedded device, the weakest link should be identified. As bitstream manipulations are believed
to be highly complex and time-consuming, the impact of this attack vector was underestimated
in the past.

Related attacks can also be launched in “weaker” settings, for instance, by an adversary who
replaces existing equipment with one that is backdoor-equipped or by exploiting reprogramming
features to implant a backdoor. Other related attacks are hardware Trojans installed by Original
Equipment Manufacturers (OEMs). It can be said that such attacks constitute a realistic threat,
because the entire arsenal of security mechanism available to us, ranging from cryptographic

61

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

primitives over protocols to sophisticated access control and anti-malware measures, can be
invalidated if the underlying hardware is manipulated in a targeted way.

Our investigation required two reverse-engineering steps related to the FPGA bitstream and
to the firmware of the underlying ARM CPU. In our Trojan insertion scenario, the targeted USB
flash drive is intercepted before being delivered to the victim. The physical Trojan insertion
requires the manipulation of the SPI flash memory content, which contains an FPGA bitstream
as well as the ARM CPU code. The manipulating of the FPGA bitstream alters the AES-256
algorithm and turns it into a linear function, which can be broken with 32 known plaintext-
ciphertext pairs. After the manipulated USB flash drive has been used by the victim, the
attacker is able to obtain all user data from the ciphertexts. With this proof-of-concept FPGA
bitstream attack of our real-world target device, we further highlight the practical relevance of
malicious bitstream manipulation attacks.

5.2 Proceeding of Inserting an FPGA Trojan

In the following, we assume that the attacker is able to intercept a device during the shipping
delivery before it arrives at the actual end user. As indicated before, this is not an imaginary
scenario as according to the Edward Snowden documents it is known as interdiction [SPI13].

5.2.1 Attack Scenario: Interdiction

The process of interdiction is illustrated in Fig. 5.1. Ordered products (e.g., an USB flash
drive) of an end user are secretly intercepted by an intelligence service during the shipment.
The target device is modified or replaced by a malicious version, e.g., one with a backdoor. The
compromised device is then delivered to the end user. Intelligence agencies can subsequently
exploit the firmware or hardware manipulation.

According to the Snowden revelations, hardware Trojans are placed, e.g., in monitor or key-
board cables with hidden wireless transmitters, allowing for video and key logging [SPI13]. It
also can be assumed that a PC malware may be distributed with the help of a compromised
firmware of an embedded device as recently demonstrated by Nohl et al. [NKL14]. This can
have severe impacts such as secret remote access by a malicious third party or decryption of
user data on physical access. It is relatively easy to alter the firmware, e.g., of an Advanced
RISC Machine (ARM) processor, or other similar platforms if no read-out protection is given
or no self-tests are utilized.

In contrast, altering hardware such as an ASIC is a highly complex procedure. Recently,
Becker et al. [BRPB13] demonstrated how a malicious factory can insert a hardware Trojan
by changing the dopant polarity of existing transistors in an ASIC. However, this requires a
different and considerably stronger attacker scenario than the one shown in Fig. 5.1, because the
modification takes place during the manufacturing process. This is a time-consuming, complex,
and expensive task and therefore less practical.

On the contrary, at first glance, attacking an FPGA also seems to be similarly challenging
because the bitstream file is proprietary and no tools are publicly available that convert the
bitstream back to a netlist. However, in Chapter 4 we have shown that a bitstream manipulation
attack can indeed be successfully conducted with realistic efforts depending on the hardware
configuration.

62

5.3. Real-World Target Device

Intercepted Shipment

4 Order J &
st |t End
I User

Normal Shipment

Figure 5.1: Interdiction attack conducted by intelligence services

In our case, we simulated the scenario of Fig. 5.1 by mainly manipulating the bitstream of an
FPGA contained in a high-security USB flash drive that utilizes strong cryptography to protect
user data. After the manipulated USB flash drive has been forwarded to and utilized for a
certain amount of time by the end user, the attacker is able to obtain all user data.

5.3 Real-World Target Device

To demonstrate our FPGA Trojan insertion, we selected the Kingston DataTraveler 5000 [Kin]
as the target, which is a publicly available commercial USB flash drive with strong focus on
data security. This target device is overall FIPS-140-2 level 2 certified [NIS10]. It uses Suite
B [NIS01b] cryptographic algorithms, in particular AES-256, SHA-384, and Elliptic Curve Cryp-
tography (ECC). All user data on our targeted USB drive is protected by an AES-256 in XEX
Tweakable Block Cipher with Ciphertext Stealing (XTS) mode. A PC software establishes a
secured communication channel to the USB flash drive and enforces strong user passwords.

Due to the FIPS-140 level 2 certification, the device has to fulfill certain requirements of
tamper resistance on the physical, hardware and software levels as well as on detecting physical
alterations. The PCB of the Kingston DataTraveler 5000 is protected with a titanium-coated,
stainless-steel casing and is surrounded by epoxy resin to prevent the undesired access to its
internal hardware components.

5.3.1 Initial Steps and Authentication Process

When plugging the USB flash drive into a USB port for the first time, an unprotected partition
drive is mounted making the vendor’s PC software available to the user. Meanwhile, in the
background, this software is copied (only once) to a temporary path from which it is always
executed, cf. the upper part of Fig. 5.5.

63

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

In an initial step, the end user needs to set a password. Afterwards, the user must be
authenticated to the device using the previously-set password. This means that the key materials
must be somewhere securely stored, which is commonly a multiple-hashed and salted password.

On every successful user authentication (mainly performed by the ARM CPU and the PC
software), the protected partition drive is mounted allowing access to the user data. Any data
written to the unlocked partition is encrypted with AES by the Xilinx FPGA and the corre-
sponding ciphertexts are written into the sectors of the micro SD card as indicated in Fig. 5.5.

When unplugging the USB flash drive and for the case that an adversary has stolen this
device, he/she is not able to access the user data without the knowledge of the corresponding
password. According to [Kin], after 10 wrong password attempts, the user data is irrevocably
erased to prevent an attacker from conducting successful brute-force attempts.

5.3.2 Physical Attack — Revealing the FPGA Bitstream

To conduct an FPGA hardware Trojan insertion, we need to have access to the bitstream. Thus,
in the first step we were able to remove the epoxy resin. Indeed, this procedure was much easier
than expected. We locally heated up the epoxy resin to 200°C (by a hot-air soldering station)
turning it to a soft cover and removed the desired parts by means of a sharp instrument, e.g.,
a tiny screwdriver (see Fig. 5.2).

Figure 5.2: Epoxy removal of Kingston DT Figure 5.3: Eavesdropping the bitstream of
5000 with screwdriver Kingston DT 5000 with opened
case

By soldering out all the components, exploring the double-sided PCB and tracing the wires, we
detected that an ARM CPU configures the Xilinx FPGA through an 8-bit bus. We also identified
certain points on the PCB by which we can access each bit of the aforementioned configuration
bus. Therefore, we partially removed the epoxy resin of another operating identical target (USB
flash drive) to access these points and then monitored this 8-bit bus during the power-up (by
plugging the target into a PC USB port) and recorded the bitstream sent by the ARM CPU, cf.
Fig. 5.3. Note that SRAM-based FPGAs must be configured at each power-up. By repeating

64

5.3. Real-World Target Device

the same process on several power-ups as well as on other identical targets, we could confirm the
validity of the revealed bitstream and its consistency for all targets. We should emphasize that
the header of the bitstream identified the type and the part number of the underlying FPGA
matched with the soldered-out component.

We also identified an Serial Peripheral Interface (SPI) flash among the components of the
PCB. As we have soldered out all the components, we could easily read out the content of
the SPI flash. Since such components are commonly used as standalone non-volatile memory,
no read-out protection is usually integrated. At first glance it became clear that the SPI flash
contains the main ARM firmware (2"9 ARM image). We also found another image (1% ARM
image) initializing the necessary peripherals of the microcontroller. Furthermore, we identified
that the bitstream, which we have revealed by monitoring the configuration bus, has been stored
in the SPI flash, cf. Fig. 5.4.

0x00000
15* ARM Image
0x048C0
Unused
OxFF ... FF
0x10000
2nd ARM Image
0x2A200
Security Header Fields
0x28B78
Testvectors
0x2A400
Unencrypted
FPGA Bitstream
0x6FAQ0
Unused
OxFF ... FF
OXFFFFF

Figure 5.4: Address space layout of the SPI flash

Motivated by these findings we continued to analyze all other components of the USB flash
drive and thus describe our results in the following.

5.3.3 Overview and Component Details

Based on our accomplishments described above, we could identify the following main compo-
nents placed on the double-sided PCB:

m NXP LPC3131 with embedded ARM926EJ-S CPU operating at 180 MHz
m Xilinx Spartan 3E (XC3S500E) FPGA

m HSM from SPYRUS (Rosetta Micro Series II) providing ECDH, DSA, RSA, DES, 3-DES,
AES, SHA-1, etc.

m 2 GB Transcend Micro SD card (larger versions also available)

65

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

m 1 MB (AT26DF081A) SPI flash

We revealed the layout of the circuit through reverse-engineering. The whole circuit is depicted
in Fig. 5.5. This step was conducted by tracing the data buses of the PCB and by decompiling
the PC software as well as the identified ARM firmware. Both executables were decompiled
with Hex-Rays [HR12]. The resulting source code served for further reverse-engineering.

The main task of the identified ARM CPU (master device) is to handle the user authentica-
tion, while the Xilinx FPGA (slave device) is mainly responsible for the user data encryption
and decryption. It should be noted that the FPGA is also partially involved in the authenti-
cation process and exhibits our main target for manipulation. We could not confirm the key
storage location, but we assume that the key materials are securely stored in the HSM, cf.
Fig. 5.5. As we demonstrate in this chapter, we need neither any access to the key materials
nor any knowledge of the key derivation function to be later on able to decrypt sensitive user
data.

As stated before, both images (ARM CPU code and FPGA bitstream) were discovered in the
SPI flash that are loaded and executed during the power-up of the USB flash drive.

P d
User [——wor PC Software ~—*&

T
DLL file Secure
CAES | s
channel
PCB 1 MB Micro SD
4 Card (2GB
/| ARMcode | SP! £
r/w ARM encrypted
SPiflash
Selt Processor
- FPGA Configuration Encrypt/Decrypt
v bitstream
0010%
11101
10110 HSM

Figure 5.5: Overview of revealed circuit of our target device

5.3.4 Unlinking FPGA Trojan from the Authentication Process

During our FPGA Trojan insertion, we identified several AES cores, as shown in Fig. 5.5:
(1) AES core in the PC Software: used during user authentication.
(2) AES core in the ARM code: used during user authentication.

(3) AES core in the FPGA: used during user authentication (partially) as well as for encrypt-
ing user data at high speed (main purpose).

66

5.3. Real-World Target Device

If only the functionality of the FPGA AES core is manipulated, the target device would not
operate properly anymore because all three AES cores need to be consistent due to the identified
authentication dependencies. To be more precise, all three AES cores are involved in the same
authentication process.

As our goal is to insert a hardware Trojan by manipulating the AES core of the FPGA, we
first needed to unlink the dependency (of the AES cores) between the ARM CPU and the Xilinx
FPGA, cf. Fig. 5.6. Therefore, we eliminated this dependency by altering parts of the ARM
firmware, but we realized that any modification is detected by an integrity check. We identified
several self-tests that are conducted — by the ARM CPU — on every power-up of the USB flash
drive.

Further analyses revealed the presence of test-vectors. They are used to validate the cor-
rectness of the utilized cryptography within the system. The utilized self-tests are explained in
Section 5.5.1 in more detail. In Section 5.5.2, we demonstrate how to disable them and how to
unlink the aforementioned dependencies.

To sum up, our intended attack is performed using the following steps:

(1) Identify and disable the self-tests,
(2) Unlink the AES dependency between the ARM and FPGA, and
(3) Patch (reprogram) the FPGA bitstream meaningfully.

Fig. 5.6 and Fig. 5.7 illustrate the impact of these steps. As can be seen, canceling the
dependency allows us to alter the AES core and add an FPGA Trojan. The details of how

| pLL |

AES AAES
/ User ARM[AES |/ User
ARM[AES K data data

AES

Figure 5.6: User authentication (dashed) Figure 5.7: User authentication (dashed)
and user data (solid) dependen- and data (solid) dependencies
cies before modification after modification

we could successfully alter the FPGA bitstream to realize a hardware Trojan are presented in
Section 5.4. Below, we discuss why modifying a bitstream is more suited for planting an FPGA
Trojan than replacing the whole bitstream.

5.3.5 Modifying Bitstream vs. Replacing Entire Bitstream

We want to pinpoint that replacing the complete FPGA design to insert a Trojan does not
necessarily mean that an attack is less complicated to be performed. Replacing the whole
FPGA bitstream by a completely new design is a more challenging task. The attacker would

67

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

need to further reverse-engineer and fully understand the whole FPGA environment (ARM code,
data buses, protocols, etc.) and re-implement all functions to ensure the system’s compatibility.
It turned out to be the easier and faster approach, since we were able to modify this third-party
IP core without the need to reverse-engineer or modify any part of the routing.

Thus, we only focus on detecting and replacing the relevant parts of the utilized FPGA
design. By doing so, we secretly insert a stealth FPGA Trojan that turns the AES encryption
and decryption modules into certain compatible weak functions, cf. Section 5.6.

5.3.6 Manipulation — Master vs. Slave

Admittedly, on one hand the Kingston DataTraveler 5000 is not the best target device to
demonstrate an FPGA hardware Trojan insertion because the embedded ARM CPU acts as
the master device containing all control logic. The FPGA is merely used as an accelerator for
cryptographic algorithms. In order to preserve the functionality of the USB flash drive with
an active FPGA hardware Trojan the ARM CPU firmware — as previously explained — has
to be customized too, i.e., the integrity check of the ARM CPU code needs to be disabled
(explained in Section 5.5). At this point, the attacker can alter the firmware to not encrypt the
user data at all, turning the device into a non-secure drive accessible to everyone. As another
option, the attacker can secretly store the encryption key which would result in a conventional
software-based embedded Trojan.

On the other hand, there are solutions which contain only an FPGA used as the master device
[EGP107]. Conventional software-based embedded Trojans are not applicable in those systems.
Our attack is a proof of concept that FPGA hardware Trojans are practical threats for the
FPGA-based systems where no software Trojan can be inserted. Our attack also highlights the
necessity of embedded countermeasures on such systems to detect and defeat FPGA hardware
Trojans.

5.4 Building the FPGA Trojan

In this section, we present the information which can be extracted from the given bitstream file
followed by our conducted modification on the AES-256 core. The impact of this modification
— considering the utilized XTS mode of operation — is described in Section 5.6.

5.4.1 Analysis of the Extracted Bitstream

Based on the method presented in Section 5.2, we could dump and analyze the initial memory
configuration of each block RAM of the extracted bitstream. The Spartan 3E FPGA contains up
to 20 block RAMs. We figured out that only 10 out of 20 block RAMs are used by the extracted
FPGA design. We observed that the block RAMs are organized in a byte-wise manner fitting
well to the structure of the AES state.

Our analysis revealed the presence of multiple instances of certain precomputed substitution
tables. After investigating the extracted data in more detail, we obtained a structure for each
table. We refer to the four identified tables whose details are depicted in Table 5.1. Each
substitution table stores 256 entries that can be accessed using the input z € {0,1,...,255}.

68

5.4. Building the FPGA Trojan

Our analysis revealed that the following precomputed substitution tables are stored in several
block RAMs:

T(z) = 0108(2)|[010S (x)]|020S(z)||03 0 S(x)
MC~Y(x) = 09ox||[1loz|[130x|[ld40x
S(x) = S(z)
S~ z) = S Ha)
Detected tables Identified block RAM Data
000: S(00)[|S™1(00)]]02 0 S(00)]|03 o S(00)
16 T(m) instances 001: S(01)[|S™1(01)]]02 0 S(01)]|03 0 S(01)

(1024 bytes each) .
OFF: S(FF)||S™L(FF)||02 o S(FF)||03 o S(FF)
000: 09 0 00(|11 0 00|13 0 00|14 o 00
16 MC~!(z) instances | 001: 09 0 01|11 0 01|[13 0 01|[14 0 01

(1024 bytes each)

OFF: 09 o FF||11 o FF||13 o FF||14 o FF

000: S(00)
4 S(x) instances 001: S(01)
(256 bytes each) e
OFF: S(FF)
000: S~1(00)
4 S~Y(z) instances 001: S~1(01)
(256 bytes each) .
OFF: S™!(FF)

Table 5.1: Identified substitution tables stored in block RAM

In other words, we identified the tables which realize the inverse MixColumns transformation
MC~1(-), the SubBytes SB(-) and inverse SubBytes SB~!(-). However, T(-) is not equivalent
to any T-box (Tp,...,T3), cf. [KAO8], but exhibits a very similar structure: one entry includes
the S-box, the inverse S-box, and the S-box multiplied by two and three (020S(-) and 030S(+)).
In particular T(-) combines the SubBytes and MixColumns transformations, and thus has the
same purpose as one T-box, but one remarkable difference is the storage of the inverse S-box
S~1(.). Note that all four T-boxes Tp, ..., T3 can be easily derived from 7.

5.4.2 Modifying the Third-Party FPGA Design

Our main goal is to replace all AES S-boxes to the identity function, cf., Section 5.6. For this
purpose, we have to replace all identified look-up table instances of Table 5.1. We need to
replace all S-box values such that S(z) := x and the inverse S-box to S~!(z) := x. This is

69

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

essential in order to synchronize the encryption and decryption functions. Hence, it leads to
the following precomputation rules for z € {0,1,...,255}:

T(z) = 0lox||01ox||020x||030x

MCYz) = 09oz|[11oz|[130z|[140x
S(x) ==
S~Hz) ==

Note that the modifications must be applied on all detected instances of the look-up tables in
the bitstream file, cf. Table 5.1.

In the next step, we updated the SPI flash with this new malicious bitstream and powered up
the USB flash drive by plugging it into the PC. We could observe that the FPGA modification
is successful as the encryption and decryption still work. This is true only when all instances
of the relevant substitution tables (S-box and its inverse) are modified appropriately.

From now on we consider that the malicious AES core is running on the FPGA. Hence, in
the next section, we explain in the next section how this Trojan insertion can be exploited even
though a complex mode of operation (AES-256 in XTS mode) is used by our altered FPGA
design.

5.5 ARM Code Modification

In this section, we briefly describe the cryptographic self-tests and ARM firmware modifications
essential to enable the above presented FPGA hardware Trojan insertion.

5.5.1 Utilized Self-tests

When we reverse-engineered the ARM code using the tool IDA Pro, we were able to identify
several functions that check the integrity of the ARM firmware and consistency of several cryp-
tographic functions. Every executed self-test must return a specific integer indicating whether
the test passed or not. If any self-test fails, the target device switches to an error state.

The corresponding test-vectors used by the self-tests are stored in the SPI flash. Table 5.2
provides an overview of all self-tests and the integrity checks. Besides this, we also identified
several relevant security header fields that are processed by the ARM CPU, cf. Table 5.3.
The ARM CPU expects to receive a specific signature (during power-up of the system) from
the Xilinx FPGA to ensure that it operates correctly after the configuration process. Also,
the bitstream length is coded in the header such that the ARM CPU knows the amount of
configuration bytes. Lastly, a SHA-384 hash value, calculated over the main ARM firmware, is
appended to ensure the program code integrity.

5.5.2 Disabling Self-tests to Modify ARM Code and FPGA Bitstream

Preliminary tests have shown that even minor code changes, which do not influence the behavior
of the firmware, cause the USB flash drive to enter the error state and halt during power-up.
It was concluded that there exists an implemented self-test at least checking the integrity of
the code. Thus, it became a mandatory prerequisite to find and deactivate such a test. The
responsible code was identified due to its specific control-flow graph and function calls.

70

5.5. ARM Code Modification

Self-test function Utilized parameter of self-test
AES-256 (CBC) Key K = 0x2B2B. . .2B (16 Bytes)
IV = 0x3C3C. . .3C (16 Bytes)
Input x = 0x1111...11 (32 Bytes)
AES-256 (XTS) Key K; = 0x2021...3F (32 Bytes)
Key Ky = 0x4041...5F (32 Bytes)
Tweak = 0xA2566E3D7EC48F3B
Input x = OxFOF1...FF (16 Bytes)
SHA-{224,256,384,512} | Input x = "abc”

Integrity check Input
SHA-384 Main ARM firmware

Table 5.2: Identified self-tests and firmware integrity check

Field Name Offset | Byte size | Value

Header Signature 0x00 4 0x11223344

FPGA signature 0x04 16 "SPYRUS_HYDRA2005”
Bitstream length 0x14 4 0x45600

SHA-384 hash of 2" image | 0x1DO0 | 48 SHA-384(2"¢ image)

Table 5.3: Security header fields

In addition to the firmware integrity, the correct functionality of several cryptographic algo-
rithms is tested: the AES, ECC, and SHA in the ARM code and the AES inside the FPGA. The
individual checks are performed in dedicated functions invoked by the main self-test function,
and their corresponding return values are verified. Finally, the self-test succeeds only in case
all individual checks are passed.

In order to disable the self-test the code was patched in a way that the function always returns
zero, which is the integer representation for success. Hence, arbitrary firmware modifications
and changes to the cryptographic algorithms can be applied after this patch.

5.5.3 Separating Key Derivation and FPGA AES IP-Core

As explained before, there is a software AES implementation executed by the ARM CPU and
a considerably faster hardware AES instance inside the FPGA, cf. Fig. 5.6. They are both
capable of ECB, CBC and XTS operation modes. The software AES is mainly used for self-
tests and the hardware AES for key derivation as well as encryption and decryption of the user
data stored on the USB flash drive. The key derivation requires the establishment of a secure
communication channel between the PC software and the USB flash drive. The FPGA hardware
Trojan weakens the AES IP-core making it incompatible to the standard AES, cf. Section 5.6.
Thus, the initialization of the communication channel fails and the USB flash drive goes to an
error state. To avoid such a situation the firmware has to be changed in such a way that only the

71

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

original software AES is used during the key derivation and the secure channel establishment
(instead of the modified hardware AES inside the FPGA).

The ARM code internally uses a unified AES API. Four parameters are passed to its AES
instance constructor routine. They hand over the key, the key length, the mode of operation and
a flag indicating whether the ARM CPU or the FPGA is selected for the actual computations.
The creation of all the AES instances, which are related to the key derivation as well as secure
channel establishment, had to be patched. Consequently, all corresponding AES encryptions and
decryptions are computed by the ARM CPU instead of the FPGA. In total, the parameters of
12 AES instance constructor calls have been patched to eliminate the AES dependency between
the ARM and FPGA.

5.5.4 Recording XTS-AES Parameters

In order to recover all user data from the USB flash drive we need several values for the attack:
32 plaintext-ciphertext pairs of the same sector, the sector number and the initial tweak value.
The latter parameter is hard-coded in the firmware and was obtained by static analysis. The
plaintext-ciphertext pairs are acquired at runtime during normal operation of the USB flash
drive. In the ARM code, there is a highly-speed-optimized function which reads data from the
embedded SD card, sends them to the FPGA for decryption and finally copies the plaintexts
from the FPGA to the USB endpoint so that the computer receives the requested data. This
function was intercepted at several positions in a way that the plaintext-ciphertext pairs and
the initial sector number could be obtained. They are then written (only once) in one unused
sector of the embedded SPI flash from where they can be read out by an attacker to launch the
cryptographic attack.

As explained in Section 5.6, having this information is essential to decrypt the phony cipher-
texts due to the underlying XTS mode. We practically verified the plaintext recovery of the
weakly encrypted ciphertexts stored on the SD card of our target device.

5.6 XTS-AES Manipulation and Plaintext Recovery

In this section, the cryptographic block cipher mode of operation XTS is briefly presented. As
already indicated in the previous sections, our target device uses a sector-based disk encryption
of user data. The tweakable block cipher XTS-AES is standardized in IEEE 1619-2007 [IEEOS]
and used by several disk-encryption tools, e.g., VeraCrypt and dm-crypt as well as commercial
devices like our targeted USB flash drive.

Each sector (usually 512 bytes of memory) is assigned consecutively to a number, called tweak
and denoted by ¢ in the following, starting from an arbitrary non-negative integer. Also, each
data unit (128-bit in case of XTS-AES) in a sector is sequentially numbered, starting from zero
and denoted by j. This pair (i,7) is used for encryption and decryption of each data unit’s
content.

In general, XTS-AES uses two keys (ki1,k2). The first key ky is used for the plaintext en-
cryption and the second key ko for the tweak encryption. The XTS-AES encryption diagram is
depicted in Fig. 5.8. After the tweak encryption, the output is multiplied by o/ in the Galois
field GF(2'2%), where « is a primitive element, e.g., & = x and j is the data unit position in the

72

5.6. XTS-AES Manipulation and Plaintext Recovery

Tweak ¢ ol Pij

AES_ ENC

k2

_>®
'
_>®

|

CZ 7j

Figure 5.8: XTS-AES encryption block diagram overview

sector ¢. This result is then XOR-ed before and after encryption of the plaintext block we refer
to as p; j. The encryption of one 16-byte plaintext can be described as

cij = (AESk, (i) ® of) ® AESy, (AES, (i) ® o) © pi),
while the decryption is computed as follows

pij = (ABESk, (i) ® o/) @ AES, ' ((AES, (i) ® o) @ ¢).

5.6.1 Manipulation of AES-XTS

As explained in Section 4.4.6, a manipulated AES core (AES(+)), for which the AES S-boxes
S(x) were substituted by the linear function S*(z) = z, can be described as follows.

¢=AES,(p) = SR(... MC(SR(p)...))®K = MS(p) & K

==MS5(p)

So far, in this thesis we only discussed on how to decrypt all phony ciphertexts ¢ considering
a single encryption call of AESk(p). For our target device, we need to extent the approach for
the underlying XTS mode of operation. In this case, an XTS-AES ciphertext can be described
as a linear equation too:
Gj = (AESK, (1)) ® o’) @ AESy, ((AES, (i) ® o/) @ pi)
= (MS(i) & K2) @ o/ & MS((MS(i) ® K2) @ o ®pij) & Ky
= (MS(i)® ?) ® MS(MS(i) ® o/) DM S(p;) ® (K2 ® o) ® MS(K2 ® o) @ Ky
TW; CK;

Since MS(-) is a linear function, the tweak part T'W; ;, the plaintext-related part MS(p; ;),
and the key-related part C'K; can be seen as separated XOR terms. Every plaintext p;; is
encrypted in this way by the FPGA hardware Trojan of our target device. An attacker only
needs to gather the following information:

73

Chapter 5. Real-World FPGA Trojan Insertion into a Commercial High-Security Encryption Device

m 32 plaintext-ciphertext pairs (p; j,¢;j),7 € {0, ...,31} of one sector (512-byte wide), and
m knowledge about the tweak value i corresponding to this sector.

Due to the combination of the data unit’s position j and the key ks (through Galois field
multiplication by o), each position j in a sector has its own constant key-related part CK;.
Further, C'K; is constant for every sector of the memory as it is independent of 7. Once all 32
CK; are known to an attacker, any plaintext p; ; can be easily recovered. Therefore, the attack
requires only 32 plaintext-ciphertext pairs of one arbitrary sector to obtain all C'K; values,
cf. Algorithm 10.

Algorithm 10 Computation of key-dependent secrets C'K;

Input: 32 Plaintext-ciphertext pairs (p; ;, ¢; ;) from a linearized AES-XTS, Tweak i
Output: Key-dependent secrets CK; for j € {0,1,...,31}

for j = 0to 31 do
TW; ;= (MS() ® al) & MS(MS(i) @ o)
MSM = MS(pihj)
C’Kj = CZA,JJ @TVV,;J) MSZ'J‘

Return all CK;

Once an attacker obtained all C K, any read out ciphertext that we refer to as y; ; can be
decrypted as described in Algorithm 11.

Algorithm 11 Decryption of ciphertexts that were encrypted with manipulated AES-XTS

Input: Weak ciphertext y; ; from a modified AES-XTS with Sid(.), 32 previously obtained
key-dependent secrets C'K;, Tweak ¢ and block j
Output: Plaintext z; ; corresponding to weak ciphertext y; ;

TW;; = (MS(i) ® o) & MS(MS(i) ® af)
MS(pij) =9i; ©TW;; & CK;

pij = MSH(MS(pij))

Return p; ;

It is worth mentioning that the produced ciphertext still appears to be random for a victim,
who visually inspects the phony ciphertexts from the micro SD card. Therefore, the victim
cannot observe any unencrypted data as it would be the case if the FPGA is simply bypassed.

5.7 Summary of Security Problems

We summarize the security problems of our investigated target device and further outline which
security barriers might be inserted by the vendor to improve the security of the analyzed USB
flash drive.

As previously stated, during our analysis we found an HSM from SPYRUS that is directly
connected to the Xilinx FPGA over a single-bit bus. According to [Mic| it provides certain

74

5.8. Conclusion

cryptographic primitives and serves as a secure storage device, e.g., for secret (symmetric) keys.
We suggest including the following security measure: during the power-up of the USB flash
drive, the FPGA should validate its AES implementation using the AES core provided by the
HSM. It should be extremely challenging for an attacker to alter the AES core of the HSM
as its internal functionality is realized by an ASIC. The HSM should decide whether the USB
flash drive continues (no alteration detected) or switches to an error state (alteration detected).

To further raise the bar for an attacker, the FPGA design should include built-in self-tests
for the S-box configuration as well as for the whole AES core. To be more precise, it is rec-
ommended to include several test vectors in the FPGA firmware so the FPGA can validate
its consistency. Probably, the built-in self-tests do not hinder a more powerful attacker who
can disable them, but the reverse-engineering efforts are significantly increased and require a
more powerful adversary. Since in our attack scenario we exploited the content of the block
RAMs, it is also important to assure their integrity. Their initial content can be encrypted with
an appropriate mode of operation: a built-in circuitry in the FPGA design might (during the
FPGA power-up) decrypt the block RAM’s contents and update them with the corresponding
decrypted data. By doing so, an attacker cannot replace the highly important S-boxes in a
meaningful way to implant a Trojan-like functionality of the AES core. We proposed such a
countermeasure in Section 4.5.

More importantly, all self-tests (including those we found) should be performed by the HSM.
Therefore, the HSM should verify the integrity of the ARM code. Further, the bitstream of the
FPGA must be protected (not stored in plain in the SPI flash) and its integrity must be verified
e.g., by the HSM. This should prevent any modification attempt on the ARM code as well as
on the bitstream, making a firmware modification attack rather challenging.

5.8 Conclusion

In this chapter, we demonstrated the first practical real-world FPGA Trojan insertion into a
high-security commercial product to weaken the overall system security. We reverse-engineered
a third-party FPGA bitstream to a certain extent and replaced parts of the FPGA logic in a
meaningful manner on the lowest level. In particular, we significantly weakened the embedded
XTS-AES-256 core and successfully canceled its strong cryptographic properties making the
whole system vulnerable to cryptanalysis. Our work is a proof of concept that an FPGA can
also be one of several weak points of a seemingly protected system. It is important to ensure the
integrity of the FPGA bitstream even though its file format is proprietary. This is especially
critical in applications where the FPGA acts as the master device. Future work must deal with
counterfeiting bitstream modification attacks by developing appropriate countermeasures that
have to be implemented within an FPGA design.

75

Chapter 6

Bitstream Fault Injections (BiFl) - Automated
Fault Attacks Against SRAM-based FPGAs
and AES

Targeted bitstream manipulations, requiring the detection of relevant sub-circuits,
work well for the majority of AES implementations, but nevertheless there is no
success guarantee for special AES implementations. In this chapter, we go one step
further regarding crypto-related manipulations of third-party bitstreams and improve
the success rate of key recovery. During further research investigations, we found
a more generic attack strateqy allowing to automatically manipulate a third-party
FPGA bitstream realizing a cryptographic primitive such that the underlying secret
key is revealed. Our attack strategy turned out to be surprisingly powerful as we
could attack 15 out of 16 AES cores in an automated fashion. Hence, we introduce
a novel class of bitstream fault injection (BiFI) attacks, which does not require any
reverse-engineering to undermine cryptographic cores. As opposed to the targeted S-
box manipulations in the bitstream, this kind of attack can be automatically mounted
without any detailed knowledge about either the bitstream format or the design of
the cryptographic primitive under attack. We further demonstrate that the bitstream
encryption schemes of Xilint FPGAs do not necessarily prevent our attack if the
integrity of the encrypted bitstream is not carefully checked. As a proof of concept,
we successfully attack 12 out of 18 encrypted AES cores of a Xilinx Virtex 5 FPGA.

Contents of this Chapter

6.1 Related Work e e 78
6.2 Motivation and Contributiono 000000 L. 78
6.3 Background 79
6.4 Attack Idea L e 80
6.5 Experimental Setup and Results 83
6.6 Analysis e 91
6.7 Discussions and Countermeasures 96
6.8 Conclusion 98

77

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

6.1 Related Work

Methods of how to attack cryptographic implementations and how to secure them have been
studied for a long time in the scientific literature. As one of the earlier references, Boneh et
al. [BDL97] demonstrated in 1997 that the RSA public-key scheme as well as authentication
protocols are vulnerable to fault injections. The idea is to exploit transient hardware faults that
occur during the computations of the cryptographic algorithm. Due to the injected faults, faulty
intermediate values may propagate sensitive information to the output revealing the private key.
This concept was extended by Biham and Shamir [BS97] — known as Differential Fault Analysis
(DFA) — to recover the secret key from symmetric block ciphers such as DES. In 2003, Piret and
Quisquater [PQO3] introduced a sophisticated fault model for AES which enables an attacker
to recover the secret key with only two faulty ciphertexts.

Additionally, numerous other implementation attacks on hardware have been proposed, in-
cluding power and EM side-channel attacks [MBO™05], glitch-based fault attacks [LSGT10,
CTO05], laser fault attacks [SA02] and photonic emission attacks [SNKT13], each requiring dif-
ferent expertise and equipment. For a classification of fault injection attacks, we refer to contri-
bution [VKS11]. Notably, all proposed methods have in common that they cannot be executed
automatically for different targets. They always require an experienced engineer to adjust the
attack to each new target that may become a time-consuming task in a black-box scenario.

6.2 Motivation and Contribution

We introduce a new strategy to efficiently and automatically extract secrets from FPGA designs
which we coin bitstream fault injection (BiFI) attack. Moreover, the goal is to reduce the
required expertise as well as the engineering hours. Instead of (partially) reverse-engineering a
hardware configuration as described in Chapter 4, we manipulate an unknown bitstream without
any knowledge of the configuration resulting in faulty ciphertexts. These faulty ciphertexts can
then be used to recover the secret key. The general idea that one might recover secret keys
by manipulating bitstreams without reverse-engineering was first mentioned in [TML11], but
no concrete attack was proposed and it remained unclear if such an attack is indeed feasible
in practice. In this chapter we not only show that such attacks are indeed feasible, but also
that they are much more powerful than assumed. A surprising large number of bitstream
manipulations result in exploitable faulty ciphertexts. A key finding of our analysis is that it is
not necessary to make targeted manipulations based on knowledge of the target design. Instead,
a set of design-independent manipulation rules can be applied automatically to different regions
of the target bitstream until the attack succeeds. Thus, one only needs to develop an attack
tool once and can apply it to any design that implements the same cryptographic algorithm.
Crucially, no FPGA reverse-engineering expertise is needed to perform the BiFI attack on
different targets. We verified the feasibility of the attack with 16 different AES implementations
on a Spartan 6 FPGA. Out of those, 15 designs could be successfully attacked with BiFI in an
automated fashion.

It seems that bitstream encryption can prevent BiFI attacks, but this assumption turned
out to be not necessarily true. Already in [TML11] it was noted that bitstream manipulations
might be possible in theory on encrypted bitstreams if no integrity checks are used. However, it
was also noted that the CRC feature as it is implemented in Virtex 2 through Virtex 5 FPGAs

78

6.3. Background

should prevent bitstream manipulation attacks such as BiFI. Nonetheless, we could successfully
attack bitstreams on a Virtex 5 with an enabled bitstream encryption scheme. We demonstrate
this by successfully attacking 12 out of 13 encrypted AES cores. Hence, bitstream encryption
in combination with a CRC feature is not necessarily enough to stop BiFT attacks.

Note that the majority of currently-deployed Xilinx FPGAs appear to be vulnerable to the
BiFT attack. However, (automatic) bitstream manipulations attacks were widely neglected in the
past due to the believed high complexity needed for reverse-engineering. In contrast, the attacks
presented in this thesis show that bitstream fault injection attacks can be performed completely
automatically without any user interaction and particularly without reverse-engineering of the
design or the bitstream format. Hence, BiFI attacks are low cost and require very little expertise.
Furthermore, in contrast to all previous works, BiFI (up to some extent) can nevertheless deal
with encrypted bitstreams.

Note that during our experiments, most AES cores could be attacked with only one faulty
ciphertext. In many cases, neither the plaintext nor the fault-free ciphertext are required.
In addition to that, as a negative result, it turned out that the proposed countermeasure of
Section 4.5, designed to mitigate a key recovery by means of bitstream manipulations, was vul-
nerable to the BiFI attack, as well. This highlights the importance of dedicated countermeasures
that should be part of the hardware configuration.

6.3 Background

Since we will later introduce various LUT modification rules in the bitstream, we first provide
some low-level background information on how LUTs are used in most Xilinx FPGAs. Fig. 6.1
illustrates a simplification of the most common slice configurations. Note that we ignored some
hardware elements such as flip-flops and switch-boxes for the sake of simplicity.

Slice Slice Slice Slice
Configuration (a) Configuration (b) Configuration(c) Configuration (d)
64-bit LUT 64-bit LUT 64-bit LUT 64-bit LUT
3 iy =] BN = =
= |6a-bie| [* S| 132bit] =Y: |1 =3 | 6a-bit = | 6a-bit
= —X 3| [32-bit] 2 || = NIE
= y = = =
— .
=3 [sa-bit| | ¢ =| (320 Vs 13 | 6a-bie| [1 = [ea-bit| [1
= [~ =l [32-bt] [PV || = y,
—| —] — —
— L V3 — = —
S |sa-bit| |, o = Y5 || =] | ea-bit = | 6a-bit f
= = A | = y: ||=
= = = =
— .
=||64-bit :y“ = W Y || 3] |ea-bit T =||ea-bit T
—+ x :: m _’Ya — —
Each LUT realizing Each LUT realizes two || Two LUTs realizing Four LUTsrealizing
a native 64-bit 32-bit truth tables an 128-bit truth a 256-bit truth
truth table table each table

Figure 6.1: Subset of the most commonly used possible slice configurations with focus on look-up
tables

79

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

Each 6-bit LUT can implement one out of 264 possible 6 — 1 Boolean functions, cf. config-
uration (a) in Fig. 6.1. Alternatively, each 64-bit LUT can be split into two 32-bit subtables
in order to realize two different 5 — 1 Boolean functions with shared inputs, cf. configuration
(b) in Fig. 6.1. Two (resp. four) LUTs within one slice can also be combined to realize larger
truth tables with 128 bits (resp. 256 bits) to realize 7+ 1 (resp. 8 — 1) Boolean functions, cf.
configuration (c) and (d) in Fig. 6.1.

6.4 Attack ldea

The first step of the attack is to read out the bitstream of the device under attack from the non-
volatile memory or by wiretapping the configuration data bus. The attack tool then repeatedly)
manipulates the bitstream by changing (randomly appearing) LUT contents, i) configures the
target device with the altered hardware configuration, and #ii) queries the manipulated design
to collect faulty ciphertexts. The faulty ciphertexts are used to recover the key by testing a set
of hypotheses, e.g., that the faulty ciphertext is the plaintext XORed with the key. However,
there are numerous LUTs in even small FPGAs, and testing all possible modifications on all
LUT bits is not practically feasible. Therefore, we try to reduce the space for manipulations
by defining particular rules in such a way that the faulty ciphertexts can be still used for key
recovery.

6.4.1 Manipulations Rules

All the conducted manipulations target the LUTSs of the FPGA, i.e., only the combinatorial
logic of the design is changed. Let LUT; be the i occupied LUT of n available LUTSs on the
target FPGA. As indicated in Section 2.1.1, a LUT is a 64-bit truth table 7" that implements
a Boolean function y = f(z) with z € {0,1}% and y € {0,1}. Let us denote the j'' binary
element in this truth table as T[j] with 0 < j < 63. As stated before, we suppose that the
location of the truth table in the bitstream for each LUT is known to the attacker!, and hence
he can directly modify any single bit of this truth table. With T" as the original truth table and
its corresponding manipulated truth table T, we define three basic operations:

(1) Clear 64-bit LUT configuration: T[j] = 0, Vj € {0, ..., 63}
(2) Set 64-bit LUT configuration: T[j] = 1, Vj € {0, ..., 63}
(3) Invert 64-bit LUT configuration: T[j] = T[j] ® 1, Vj € {0, ...,63}
and accordingly we define three manipulation rules as
® Ry [i]/Rs[i]/Rsli] : Clear/Set/Invert the it* 64-bit LUT configuration

which cover the cases where the entire LUT forms a 6 + 1 function, cf. configuration (a) in
Fig. 6.1. Besides modifying the entire LUT, we also consider the cases where only the upper or
lower half of the LUT is manipulated. As an example, we can form 7' by

m T[j]=1,Vj€e{0,..31}

! As indicated before, reverse-engineering the LUT encoding eases the attack, but is not required to be able
to mount a successful attack for the majority of examined AES cores.

80

6.4. Attack ldea

m T[j] = T[j],Vj € {32,...,63}

In other words, we only modify the upper half (first 32 bits) of the truth table. The motiva-
tion of considering these operations is the cases where a LUT realized a 5 — 2 function, cf.
configuration (b) in Fig. 6.1. Hence, we define three other rules as

® Ryli,h]/Rs[i, h)/Reli, h] : Clear/Set/Invert the h*" half of the i*» LUT

To cover other two configurations — (¢) and (d) Fig. 6.1 — where two or four LUTSs are grouped
to form larger truth tables, we define the next four rules as

m R;[i]/Rs[i] : Clear/Set all 4 LUTs within the i'" slice
m Ryg[i,h]/Rioli, h] : Set/Clear (h = 1) upper or (h = 2) lower 2 LUTs within the i slice

Let us define the term Hamming weight of the content of all 4 LUTs within a slice as HW.
Accordingly, we define two rules as

B Rii[n], Ri2[n] : Clear/Set all 4 LUTs within slices with HW =n

with n € {1,...,256}. In other words, by these rules we clear/set all slices that have a specific
Hamming weight. The motivation for these rules is to potentially alter multiple instances of
the same Boolean function simultaneously. This may result in manipulating all instances of the
same S-Box in the design at once.

Based on our observations, the LUT of the control logic that examine whether a counter (e.g.,
AES round counter) reaches a certain value (e.g., to issue a done signal) have a considerably
low or high HW. In other words, the content of such LUT have a high imbalance between the
number of '1’s and ’0’s. As an example, a LUT with 4 inputs cscacicg which checks whether
c3¢2¢1¢9=1010 (104ec as the number of AES-128 rounds) has a HW equal to one. This case is
covered by the following rules.

m Riy3[i,] : Invert bit T[j] of the i*" LUT, if 1 < HW <15
B Ry4fi,j] : Invert bit T[j] of the i*" LUT, if 49 < HW < 64
Finally, we cover the case where a LUT is replaced by a random Boolean function:

m Ri5[i] : Set the i LUT to a random 64-bit value. Repeat this step 10 times.

6.4.2 Key Recovery

By applying any of the above-explained manipulation rules (R; — Ry5), we have hit control logic
and/or data processing part if a faulty ciphertext is observed. All collected faulty ciphertexts
potentially exhibit a sensitive intermediate value allowing for key recovery. Hence, all faulty
ciphertexts are further processed depending on which intermediate value hypothesis (we denote
to Hy — Hjp) is tested to derive a set of AES key candidates. All those derived AES key
candidates are then automatically tested by a C+-+ tool with the help of one valid plaintext-
ciphertext pair (p, c).

In practice, an adversary can check whether the computation AES; " (c) outputs the

key candidate
known plaintext p. Given this is true, the tested AES key candidate is equal to the correct

81

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

AES key k. A known plaintext-ciphertext pair (p,c) can for example be obtained from our
AES core itself or the attacker might know part(s) of the plaintext, i.e., due to constant header
information. In cases where no plaintext-ciphertext pair is available (p unknown, encryption can
be invoked, ciphertext ¢ observable), an adversary may also analyze the entropy of decrypted
ciphertexts, e.g., if the decryption yields text which typically has a low entropy.

In several cases the key can be extracted without knowing the correct fault-free ciphertext,
which is an advantage for an attacker, particularly for cases where he does not have full control
over the AES circuit. We hence define the following key hypotheses?:

u Hl[j] 1 C

Tkj
m Holj]: &= SB(0'%) & rk;,

for j € {0,...,10}. The hypothesis H; mainly deals with the cases where the state st be-
comes 0'28. Further, H, targets the faults which hit the control logic in such a way that the
S-box input register always becomes inactive. We give a more detailed information about this
concept in Section 6.6.1. If only one round key rkq, ko, ..., k1o is extracted, the main key rkq
can be easily recovered (e.g., see [KK06]). Further, we consider the following hypotheses:

| Hg[]] 15:C@T]€j
| H4:E:ka10
] H5:é:Sb1()

To recover the key using Hj is straightforward as rk; = ¢ © c. Hypotheses H4 and Hpy check the
dependency between the faulty ciphertext and the state in the last AES round. With hypothesis
Hy the last roundkey k19 can be recovered: rkig = SR(SB(¢)) ® ¢. A similar approach can
be followed for hypothesis Hs. The next set of hypotheses are defined as:

m Hglj]:c=pdrk;

m H;:¢=sm

m Hg:¢=sb

B Hy:¢=mec

m Hy:é= AESp(p)

m Hy:¢=SR(SB(p)) @ rkio

where k' is defined as rk{ = rko, and rk:}e{l 0} = 0'28. Using Hg is straightforward. Hr,

Hg, and Hg can also be checked by applying the corresponding inverse functions, e.g., rkg =
SB=Y (SR (MC~1(&))) ® p for Hy.

To examine Hig, we need to apply a specific form of the decryption function as rkg =
AES,}é) @ p with Vj € {0,...,10}, rkf = 0'?°. Hypothesis Hiy can be seen as an AES
encryption where only the steps of the last AES round are executed on the plaintext p. In this
case, the last round key can be trivially computed with rkig = ¢ ® SR(SB(p)).

2Note that we stick with the definitions of AES states as introduced in Section 2.3

82

6.5. Experimental Setup and Results

In each of the above hypotheses only one faulty ciphertext is used. Ome can also define
hypotheses that used two faulty ciphertexts generated by two different bitstream manipulations
for a certain plaintext. As an example, knowing ¢; = kas and é» = kas would lead to a full key
recovery. In this scenario, the adversary needs to try all possible combinations between different
faulty ciphertexts, and the computation complexity of the attack increases quadratically. Since
it is — to some extent — in contradiction with our goal (i.e., limiting the number of rules as
well as the hypotheses for key recovery), we omit the corresponding results although we have
observed such successful cases in six designs in our experiments.

6.5 Experimental Setup and Results

For evaluating the effectiveness of BiFI, we use exactly the same 16 AES cores (Dy, D1, ..., D15)
as introduced in Section 4.4.5. The interested reader is referred to this section as it explains
which implementations are round-based, unrolled, and so forth. In order to perform the attacks,
we developed a program to automatically apply all the rules R1-R15 given in Section 6.4.1 one
after each other. To this end, our tool first queries the original design with a particular plaintext
and captures the fault-free ciphertext (p,c). Afterwards, for each rule our tool manipulates
the bitstream accordingly, configures the FPGA, queries the design with the same particular
plaintext p and collects the corresponding faulty ciphertext ¢. Another program (which we have
developed as well) examines all the hypotheses H-Hj; described in Section 6.4.2 by analyzing
each faulty ciphertext?.

3Due to larger tables leading to visualization issues, the next paragraph continues in the next page.

83

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

6.5.1 Results without Enabled Bitstream Encryption Scheme

Our setup is again based on a Spartan 6 (XC6SLX16) FPGA, where the JTAG port is used
for configuration, cf. Fig. 4.2. The entire bitstream manipulation, configuration, query and
collection of the faulty ciphertext takes around 3.3 seconds. We should emphasize that by
manipulating the bitstream, the Cyclic-Redundancy-Check (CRC) checksum should be correct.
Alternatively, the bitstream can be modified in such a way that the CRC check is simply
disabled. As stated before, we conducted our attack on 16 different designs. The corresponding
results are depicted in Table 6.1 indicating which manipulation rule R;-R;5 on which AES
design Dy-D15 led to an exploitable faulty ciphertext.

‘ ‘DO‘Dl‘DZ‘D3‘D4‘D5‘D6‘D7‘D8‘D9‘DlO‘Dn‘Du‘D13‘D14‘D15‘d,att.‘
Changing all 64 bits of a LUT in the bitstream

Ry[i] : Clear LUT 1 3 . 6 . . . 1 1 3 1 2 8
Ryli] : Set LUT 2 4 3 1 . . . 2 2 2 . 3 . . . 1 9
R3[i] : Invert LUT 1 9 2 2 1 . . . 1 2 2 2 . . . 2 10
Changing only 32 bits of a LUT in the bitstream
Ryli, h] : Clear half LUT . 4 . 7 1 4 3 3 . . 1 1 1 2 10
Rs[i, h] : Set half LUT 1 3 2 3 3 3 2 . 3 1 1 1 1 12
Rg[i, h] : Invert half LUT . 7 2 5 1 . . 1 1 3 1 2 2 2 3 4 13
Changing two or four 64-bit LUTsSs in the bitstream
R7[i] : Clear slice . 1 . 4 . 1 3 1 . 1 5
Rgli] : Set slice 1 1 1 1 1 . 1 . 1 1 3
Ryli, h] : Set 2 LUTs 1 2 . 5 1 2 3 1 . 1 8
Ryo[i, h] : Clear 2 LUTSs 1 2 1 1 . . . 2 2 1 . 2 1 9
Clearing only LUTs with a specific slices’” HW in the bitstream
Rq1[n] : Clear slice if HW=n . . . 1 . . 1 2
Rya[n] : Set slice if HW=n . 1 . 1 . . . 1 2
Inverting single LUT bits (64 times) for a specific HW in the bitstream
Ry3li, j] : Invert bits if HW < 15 . 2 2 3 . . 2 5 5 4 . . 1 1 1 . 7
Ri4li, j] : Invert bits if HW > 49 . 1 1
Configuring random Boolean functions (10 times) in the bitstream
[Ris[i] : Set LUT randomly [7 [8tJwe]i6] 1 [. [. [3]7]1B][1[]12[5]2]5]3] 14|
Statistics
>~ exploitable faulty ciphertexts 15 | 711 29 | 56 | 3 0 3 126 |27 | 40 7 25 10 7 11 19
Number of vulnerable LUTs (Ri-R14) | 5 20 | 4 | 18| 1 0 2 9 7 113 3 5 3 3 4 6
Measurement time Rj-Rj2 (hours) 20 | 26 | 18 | 74 | 22 | 64 | 26 9 9 42 | 62 12 26 | 246 | 28 12
Measurement time Ry3-Ri4 (hours) 110 | 12 | 11 | 38 | 16 | 53 | 18 | 5 5|26 | 34 8 18 | 61 | 21 7

Table 6.1: Overview of the experiments with regard to the different modification rules. Each
entry in the table represents the number of times for which applying the manipulation
rule R; lead to an exploitable fault for design D;. The last column “d.att.” (designs
attacked) shows the number of different designs D; that could be attacked with
the corresponding rule. In the experiment, several modification rules resulted in
an exploitable faulty ciphertext when applied to the same LUT. The number of
LUTs that lead to at least one exploitable faulty ciphertext for at least one of the
manipulation rules Ry — R4 is shown in row “Number of vulnerable LUTs” as a
reference

Similarly, Table 6.2 shows for each AES design which hypotheses Hi-H1; led to successful key
recovery. For all designs, except the unrolled pipeline one (Dj), at least one hypothesis could
make use of the faulty ciphertexts generated by the manipulation rules to recover the key. In
Section 6.6.1, we give a detailed analysis on the exploitable faults. In short, many exploitable
faults hit the control logic (i.e., the AES state machine is modified). We predict this to be the

84

6.5. Experimental Setup and Results

\ [Do [D [Dy [D5 [Di | D5 | Ds [Dr [Ds [Do [D [D [D | D [Pu [D [dait]
Hy :rko 12 1
Hy :rkyo . . . 33 . . . 2 4 15 . 3 . . . 5
Hy : S(0™2%) @ ko K . K R . . . K 4 2 4
THy : S(0™) & rky 1 . . .
TH, - S(0') @ rky 1
Hy : S(0™%%) @ rkio . 6 2 2
Hs:c®rkio 2 2
Hy : kay 3 . 2 1 1
Hs:p@rko 1) 19 10 10 1 3 1 7
TH(; p®rks
Hg:p@®rky 6
THg :p@rks
THg : p@&rke .
Heg :p@rkio 4 .
TH: : sry . 2
THy : mey 3 . . .
Hyo: AESk(p).7k; =0 . 63 10 . . . 1 17 17 . 4 . 2 2 2 4
Hy1 : SR(SB(p)) & rkio 2

o]l ==l wl o

,_‘
=
N
s

< oo =] -
EEESIFCI SN P

==l oo | el

—
o

—

Statistics
[Collected responses [20333 [26455 [18044 [75296 [22442 [65051 | 26522 | 8914 | 9080 | 42620 | 62991 [12261 | 26226 [249813 | 28188 | 12077 | |
| Unique faulty responses | 6411 | 7412 | 6022 | 28512 | 8955 | 3772 | 15887 [2587 | 2675 | 15760 | 10137 | 5171 | 15484 | 45971 [17246 | 5317 | |

Table 6.2: Overview of the experiments with regard to the different hypotheses. Each entry in
the table represents the number of times a hypotheses H; for each design D; could
be used to recover the key from faulty ciphertexts being the result of applying the
modification rules R;-R15. Some hypotheses (marked by T) succeed only for Ry5 while
some other hypotheses marked with ¥ could make use of only R;-R14. The last column
“d.att.” shows the number of different designs that could be successfully attacked by
the corresponding hypothesis. The last two rows summarize the number of collected
responses (which are equivalent to the number of times a bitstream manipulation
was conducted) and the number of observed unique faulty ciphertexts

reason why the design Ds cannot be successfully attacked, since the unrolled pipeline design
makes use of simple state machines.

It can be seen from Table 6.1 that many manipulation rules lead to exploitable faulty ci-
phertexts. It is also worth mentioning that each manipulation rule was successful for at least
one design. To compare the efficiency of the manipulation rules, we computed a ratio between
the number of performed bitstream manipulations and the number of exploitable faults, cf.
Fig 6.2a. Note that a lower ratio means that the underlying manipulation rule is more efficient,
since the average number of manipulations required for an attack becomes smaller. As stated
before, each manipulation rule led to at least one exploitable faulty ciphertext. However, some
of them are more efficient than other ones. The most efficient one is R; (i.e., clear an entire
slice), and Ry3 and Rj4 are among the worst manipulation rules. On the other hand, we should
emphasize that in B3 and R14 each bit of the target LUT is independently manipulated. Hence,
the number of manipulated bitstreams in these two rules is considerably higher compared to the
other rules. We would like to stress that on average every 3227 random manipulations (R15) led
to an exploitable faulty ciphertext (cf. Fig 6.2a) indicating that it is also a solid strategy. Nev-
ertheless, manipulations rules Ri-R12 are a bit more efficient than random manipulations with
an average 1971 manipulations required to observe an exploitable faulty ciphertext. As stated
before, the entire manipulation, configuration, and query takes around 3.3 seconds. Hence, in
average 1971 x 3.3 = 1.8 hours of bitstream manipulations are needed per exploitable faulty
ciphertext for rules Ri-R12. However, this time varies significantly depending on the targeted

85

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

Efficiency of manipulation rules over all FPGA designs

Vi
£ 40000 39488
< 35000
2
2 30000
8
S 25000
E 20000
< 15000
€ 10000
i 3281
£ 5000 2187 1969 1640 2916 2316 1090 1498 1498 1844 2048 1365
a 0
= RL R2 R3 R4 R5 R6 R7 RS R9 RI0 R11 RI2 R13 R14 RIS
Manipulation rules
(a)
2 Average attack time for each FPGA design
2
K 20.82
-,3 20.00
-
2 1500
-1}
=
T 1000 8.96
E
=
& 5.00
@ A7
E 1 0.3g 115 1.15
g 0.00
§ DO DI D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
g FPGA design

(b)

Figure 6.2: a) The ratio the number of performed bitstream manipulations over the number
of exploitable faults. b) The average attack time (in hours) until an exploitable
faulty ciphertext is obtained for each of the targeted design (using modification
rules R1-Ri2)

design. Figure 6.2b shows the average time of bitstream manipulations (over manipulation rules
R1-R12) needed for an exploitable fault for each of the 16 AES designs.

6.5.2 Experimental Setup with Enabled Bitstream Encryption Scheme

To prevent reverse-engineering and IP-theft, Xilinx FPGAs are equipped with bitstream encryp-
tion. We also investigated to what extent the above-presented attack can be efficient when the
underlying bitstream is encrypted. To this end, we take a closer look at this feature integrated
in several Xilinx FPGAs. When this protection mechanism is enabled in the vendor’s software,
the user can chose a 256-bit AES key k as well as a 128-bit initial vector IV. Excluding the
header, the main body of the bitstream is encrypted using AES256(-) in Cipher Block Chain-
ing (CBC) mode. Thus, the corresponding bitstream data of size m is divided into n 16-byte
plaintext blocks with Pie{1,.., 22}, and sequentially encrypted as

¢i = AES2565(p; @ ¢;—1), for i > 0 and ¢y = IV. (6.1)

86

6.5. Experimental Setup and Results

Analogously, the decryption is performed by a dedicated hardware module on the FPGA as
p; = AES256,;1(CZ') ®ci_1, fori > 0and ¢g = IV. (6.2)

The key needs to be programmed once into the target FPGA either in its volatile (BBRAM) or
non-volatile memory (eFUSE). At every power-up, if the FPGA receives an encrypted bitstream,
it runs the corresponding CBC decryption and configures its internal elements accordingly. In
relatively old Xilinx FPGAs, i.e., Virtex 4, Virtex 5, and Spartan 6 families, the integrity
of the encrypted bitstream is examined by a 22-bit CRC. In Virtex 4 and Virtex 5 FPGAs,
the CRC checksum is not included in the encrypted part, and the corresponding command to
enable the CRC is involved in the (unencrypted) header of the bitstream. Hence, the attacker
can easily disable such an integrity check by patching the encrypted bitstream. However, in
case of Spartan 6 the encrypted part of the bitstream contains the CRC as well. Therefore, any
bitstream manipulation most likely leads to CRC failure (see Section 6.5.4 for more information).
Further, in more recent Xilinx products, e.g., Virtex 6 and the entire 7-series, the integrity
(as well as authenticity) is additionally examined by an Hash-based Message Authentication
Code (HMAC), which also disables any bitstream manipulation.

‘ ‘DO‘D2‘D'd‘D4‘D5‘D6‘D9‘D10‘D11‘DIQ‘DIS‘DM‘DlS‘d-am-‘

Ryi] R 7[nn[1] .]J2]6[1][8]6][4]5]6] 12
Ry[i, h] 25|11 42| 2 [8[2 [][8 [7 [1B]13] 12
| 3 exploitable faulty ciphertexts [37 [1825 [3 | . [4 [14] 3 [19 [14 [11 [18 [19 [12 |

Table 6.3: Overview of the BiFI attack on encrypted bitstreams. Two modification rules Rj
and Rg were tested and each table entry represents the number of exploitable faulty
ciphertexts

Therefore, in order to investigate the efficiency of our BiFI attack when the bitstream is
encrypted, we conducted our experiments on a Virtex 5 FPGA. Obviously it is desirable to
control the effect of manipulation of the bitstream, e.g., to avoid the propagation of the changes.
If [bits of ciphertext block ¢;+1 — in CBC mode — are toggled, its effect on the plaintext block
pi+1 is not predictable. However, it also directly changes the corresponding [bits of the next
plaintext block p;i2, and interestingly such a manipulation does not propagate through the
entire bitstream. This concept is illustrated in Figure 6.3.

G 1 Cis1 Cisz Cis3
AES256," AES256," AES256,™ AES256, " | e

random
stream key .

r
v S, D
random 128 controllable
plaintext bits bits v

P, - Pie2 Ps

Figure 6.3: The impact of faulting one ciphertext block in case of CBC decryption

87

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

\ Do [Dy | D5 [Di | D5 [Do | Dy | Do [Du | Dz | Dis | P | Dis [dait, |

Hy :rko 7 . . . 5 2
Hy :rkio . . 16 . . . 7 2
Hy : S(0™%) @ rky 3 4 13 3
Hy: 5‘(0]28) @ rk; 2 . . . 1
Hs:c®rkio 1 . 1
Hy : kayp . . . 3 1 2
Hg :p®rky 17 12 11 7 6 5 13 7
Hg:p@®rke 9 1 1 3
Hg:p@rks . 2 1
Hg:p®rks 4 5 2
Hg :p®rkg . 1 1
Hﬁ i p 53] T‘kg 2 1
H()‘ ip [$3) I’k‘l() 3 6 2
Hyo : AESk(p),rk; = 01 . 6 . . . 4 . 1 . 2 1 . 1 6
Hyy : SR(SB(p)) ® rkl 2 1
Statistics
‘ Collected responses 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400 | 86400
‘ Unique faulty responses 4655 | 7659 | 16959 | 12118 | 9432 | 12124 | 8089 | 19638 | 4677 | 11706 | 12469 | 21945 | 5269

Table 6.4: Overview of the exploitable faulty ciphertexts of the different hypotheses for 13 dif-
ferent designs with enabled bitstream encryption

6.5.3 Setup and Results with Enabled Bitstream Encryption

On our Virtex 5 (XC5VLX50) setup — with bitstream encryption enabled — we examined 13
AES designs (Dg, Dao-Dg, Dg-D15) out of the previously expressed 16 designs*. If we ignore
the unpredictable changes on plaintext p;1, toggles on the bits of ciphertext c;11 lead to the
same toggles on plaintext p;+2 (see Fig. 6.3). Therefore, we can only apply the rules R3 and
Rg which toggle the entire LUT or a half of a LUT. Further, the unpredictable manipulation
of plaintext p;y1 may also hit a utilized LUT. In short, manipulation of ciphertext ¢;41 based
on R3 and Rg indirectly applies the rule Rj5 to other LUTs as well. More importantly, the
unpredictable changes on plaintext p;41 can lead to misconfiguration of switch-boxes, and hence
short circuits®. In such scenarios, the FPGA cannot be configured, and needs to be restarted.

As an attacker, we know which parts of the bitstream (either unencrypted or encrypted)
belong to LUTS’ configuration. However, in case of the encrypted bitstream we cannot explore
which LUTs are utilized. Therefore, the rules R3 and Rg need to be applied to all available
LUTs (28,800 in our Virtex 5 (XC5VLX50) FPGA). Hence, the attack takes longer compared
to targeting an unencrypted bitstream. Further, since the Virtex 5 FPGA equipped in our
setup is larger (hence, uses a larger bitstream) than the Spartan 6, each configuration takes
around 6.6 seconds, i.e., two times slower than the previously-shown experiments, which in sum
turns into 6.8 days to apply both rules (R3 and Rg) on all available LUTs. Table 6.3 shows the
corresponding result of the attacks on the targeted 13 AES designs.

Similar to the unencrypted case, only the unrolled pipeline design D5 cannot be successfully
attacked. Notably, an average of 11.5 hours is needed for a successful attack over all designs.
For further details, we refer to Table 6.4 which shows all successful hypotheses leading to the
exposure of the key.

4Due to their e.g., hard-coded macros not compatible with Virtex 5, the designs D1, D7, and Dg could not
be synthesized on this FPGA.

®Based on our observations, the currently-available FPGAs in the market are protected against such short
circuits, preventing them being destroyed.

88

6.5. Experimental Setup and Results

We also conducted another attack in which we considered the encrypted part of the bitstream
as a complete black-box, i.e., without directly targeting the LUTs. In order to minimize the
effect on plaintext block p; 12, we only toggled the most significant bit of one ciphertext block. In
other words, we tried to apply only R;5 on plaintext block p;;;. We conducted this bitstream
manipulation to each encrypted block once and could successfully attack 11 out 13 designs.
Attacking one AES core takes approximately 8 days, and led again to various exploitable faulty
ciphertextsS. To conclude, knowing the exact locations of the LUT contents in the (encrypted)
bitstream is not necessarily essential. In the next section, we briefly explain how an attacker can
figure out whether the bitstream encryption scheme of a particular Xilinx FPGA is vulnerable
to the BiFT attack.

6.5.4 Testing the Bitstream Encryption Vulnerability of Xilinx FPGAs

In an initial step, we used the Xilinx tool to generate an encrypted bitstream for a Virtex 5
FPGA with enabled CRC-check (bs_enc_crc_on). For a quick test, we randomly modified one
encrypted block in the bitstream and tried to configure the corresponding Virtex 5 FPGA.
As expected, the FPGA refused to configure the manipulated bitstream. In the next step, we
generated another encrypted bitstream for the same FPGA design and using the same key k
and the same IV, but with disabled CRC-check (bs_enc_crc_off).

Disabling the CRC-check means that two 22-bit CRC values toggle to a fixed default sequence
(defined by Xilinx) and that one bit toggles in the bitstream header which is responsible for
disabling/enabling the CRC check.

The comparison of both encrypted bitstreams bs_enc_crc_on versus bs_enc_crc_off revealed
that only the unencrypted parts of the file are different, i.e., the encrypted blocks are identical,
cf. Fig. 6.4. Therefore, we concluded that the encrypted parts of the bitstream does not contain
the checksum. Otherwise, due to the default CRC sequence at least one encrypted block would
be different.

To evaluate our findings on Virtex 5, we i) first observed all bit toggles due to bs_enc_crc_on
versus bs_enc_crc_off, then ii) applied the same bit toggles on the target encrypted bitstream
(with enabled CRC-check), iii) applied various manipulation rules (Section 6.5.3), and finally
iv) configured the manipulated bitstream into the FPGA device. It turned out that the Virtex 5
FPGA accepted the manipulated bitstream, and hence, there is no appropriate integrity check
leading to feasible BiFI attacks.

We repeated the same experiment on a Spartan 6 (SLX75) FPGA and noticed that one (out
of two) CRC sequences is part of the last encrypted block Cy, cf. Fig. 6.5. Therefore, for these
kinds of bitstreams the integrity is ensured providing protection against BiFI attacks unless
side-channel attacks are used to recover the underlying bitstream encryption key.

One further observation we made is that the Spartan 6 FPGAs in general denies any encrypted
bitstream with disabled CRC-check. This is not the case for Virtex 5.

6.5.5 Discussion on Altera Bitstream Encryption Scheme

The underlying mode of encryption and the employed integrity check determine whether a BiFI
attack can be mounted on an encrypted bitstream. While we used Xilinx FPGAs in our practical

61t is noteworthy that in this experiment several times the FPGA “crashed” i.e. could not be programmed
until it was restarted manually. This never happened for the manipulation rules that only targeted LUTs.

89

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

Meta information J Meta information
header
CRC disable = 1 CRC disable =0
Unencrypted Unencrypted
bitstream section 1 bitstream section 1
r body o
Encrypted Encrypted
bitstream section bitstream section
CiC2C3... Cyy Cy C4C2Csa... Cy1 Cny
Unencrypted Unencrypted
bitstream section 2 bitstream section 2
... CRC default CRC; ...
... CRC default CRCa...

Figure 6.4: Virtex 5 (VLX50) bitstreams, left: encryption enabled and CRC off (bs_enc_crc_off),
right: encryption enabled and CRC on (bs_enc_crc_on)

Meta information Meta information
J header

CRC disable = 1 CRC disable = 0

Unencrypted Unencrypted
bitstream section 1 bitstream section 1
r body

Encrypted Encrypted
bitstream section bitstream section
CyC2C3... Cye C'y CiC2Cs... Cy4 Cn
Unencrypted Unencrypted
bitstream section 2 bitstream section 2
... CRC default CRC2...

Figure 6.5: Spartan 6 (SLX75) bitstreams, left: encryption enabled and CRC off
(bs_enc_crc_off), right: encryption enabled and CRC on (bs_enc_crc_on)

experiments, below we discuss about the feasibility of our attack on Altera’s bitstreams with
enabled encryption. In the recent families of Altera FPGAs (similar to that of Xilinx FPGAs),
an HMAC authentication process is integrated. Hence, such devices are not susceptible to our
attacks (unless the bitstream encryption and authentication is circumvented e.g., by a side-
channel analysis attack [MOPS13]).

However, the older Stratix II and Stratix III families use AES in counter mode and a simple
CRC for integrity check. The underlying scheme in Stratix IT and Stratix III are similar except
i) AES-128 replaced by AES-256 in the later one, and i) arithmetic counter (of the counter
mode) replaced by a sophisticated pseudo-random-number generator (for more information we
refer to Section 3.3).

Both devices generate a stream key which is XORed with the plaintext blocks to form the en-
crypted bitstream. The decryption process (performed on the FPGA) follows the same concept
as depicted in Figure 6.6. In this case, if an adversary manipulates the bitstream by toggling [
bits of the ciphertext block ¢; 11, the corresponding [bits of the same plaintext block p; 1 toggle,
and the changes propagate neither to other bits of the same block nor subsequent blocks. There-
fore, compared to the encryption feature of Xilinx FPGAs, the attacker has more control over
the manipulations, hence higher efficiency of BiFI attacks. More importantly, since the CRC is

90

6.6. Analysis

\Y IV+1 IV+2 IV+3
: ! ! !
AES, AES, AES, AES, _—

' v ' !

(ot Cis1 Cis2 Cisa
controllable
bits

Pi Pi+1 Pi+2 Piss

Figure 6.6: The decryption in counter mode as it is used for bitstream encryption in Stratix II
FPGAs. Toggling a single ciphertext bit results in a predictable toggle of a plaintext
bit

linear, it can be trivially predicted how the CRC checksum should change by any toggle made
on a ciphertext block (similarly on a plaintext block). More precisely, the attacker can toggle
any arbitrary bit(s) of the encrypted bitstream and correspondingly modify the CRC checksum.
Therefore, the counter mode makes BiFI attacks considerably easier if a CRC integrity check is
employed. Although we have not yet practically examined it, we are confident that our attack
can be easily and successfully applied on Altera Stratix II and Stratix III FPGAs.

6.6 Analysis

So far we have only expressed the manipulation rules as well as the hypotheses which we used
to conduct successful attacks. In the following, we give more details on a few cases, where
observed faulty ciphertexts led to key recovery. By doing so, we disclose exploitable hardware
structures that might be helpful for the security engineer. He can for example design hardware
layouts that avoid the presented easy-to-exploit hardware structures.

6.6.1 Evaluation of Observed Faults

For a couple of exploitable faulty ciphertexts, we investigated at the netlist level, what exactly
caused this faulty behavior. To do so, we used the FPGA Editor (provided by the Xilinx ISE
toolchain) to analyze the LUTs whose modification in the bitstream led to a key exposure.
Due to the large number of faults, we only cover a small subset of exploitable faults that
are representative for a class of similar possible faults. Hence, the provided analysis is not
a comprehensive study and only aims at providing the reader with an intuition of what can
happen during the attack. It is noteworthy that the presented figures are a simplified high-level
representation of the usually more complex hardware configuration.

91

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

Hitting the Control Logic

A successful key recovery on the round-based design Dy was due to manipulating a LUT whose
two output bits are used to control a 3-to-1 multiplexer controlled by two bits (mq, mg). cf. Fig-
ure 6.7. A part of this design performs the following operations

m CLK cycle 1: state = p @ rko,
m CLK cycles 2-10: state = mc; & rkj,j € {1,...,9},
m CLK cycle 11: ¢ = sri9 @ rkig.

Depending on the clock cycle (i.e., the round counter) the targeted LUT (which controls the
multiplexer) switches between the plaintext p (0, 0), the state after MixColumns mc; (0, 1), and
the final state after the final ShiftRows sr1g (1,0), cf. the upper part of Figure 6.7. The 128-bit
multiplexer output is XORed to the corresponding 128-bit round key.

Usual workflow of original circuit

Clock Cycle 1 Clock Cycles 2-10 Clock Cycle 11

KeiSchedule | | KeiScheduie] KeESchedule |
rka /rklh{kg Plaintext p — ’rkm

Plaintext p — ¥ Plaintext p — N
St. MixColumns —§ ™ 3 St. MixColumns - 3 St. MixColumns
St. ShiftRows —

. Rows ; St. ShiftRows
wr™ [St.Initial wr™ | t.)'th |
mJ0 KeyAdd My 1 KeyA

Workflow of manipulated circuit

D

Clock Cycles 1-11
KeySchedule

m CTX =
=U p D rkig

R;:Clear LUT = mux configuration is always ,,00"

Figure 6.7: Manipulation rule Ry (Clear LUT), round-based design Dy, consequence: plaintext
p (instead of srig) is XORed to the last AES round key 7k

By applying the rule Ry (Clear LUT), the LUT outputs are permanently fixed to (0,0), and
hence, the multiplexer always outputs p regardless of the clock cycle, cf. the lower part of
Figure 6.7. More precisely, by such a bitstream manipulation, the following operations are
performed

(1) CLK cycle 1: state = p @ rky,
(2) CLK cycles 2-10: state = p @& rk;,j € {1,..,9},
(3) CLK cycle 11: ¢ = p & rkio.

The circuit outputs ¢ = p ® rkyg instead of ¢ = srig ® rkyg, which is the motivation to test
hypothesis Hg for key recovery.

92

6.6. Analysis

Update Mechanism of Flip-flops - Never Update 128-bit Key Register

We noticed a manipulated LUT whose output controls the update of a couple of flip-flops. As
an example, a LUT might control the CE signal (Clock Enable) of a 128-bit state or key register.
The flip-flops’ content is updated on e.g., the rising edge of the clock, only if the CE signal is
‘1. The manipulation rule R; (Clear LUT) turns such a LUT into constant ‘0’, hence always
disabling the update. We have observed many cases where the round key registers are never
updated. Such a LUT modification can hence turn flip-flops into read-only elements, while they
only output their initial value”.

An example is depicted in Figure 6.8. It shows that the key schedule output is not stored
by the flip-flops and they output always ‘0. Therefore, such a manipulation rule can affect all

round keys such that rkjcq 10y = 0128,
rkiq rkjg=|N|T=0
KeySchedule }zzzzz-e-eseseseeesines — D (D ——
J : » CE
: -—CLK
Ry: Clear LUT ; I INIT=0
rkl-rl =INIT=0
D QF——»
CE
CLK
I INIT=0
................................... Ks2of al Kz INT =0
CE
- — CLK
MWinT=0

Figure 6.8: Manipulation rule Ry (Clear LUT), round-based design Dis5, group of flip-flops
forming a 128-bit round key register (rk; o - r7k; 127) used for XOR with the current
AES state. Due to the manipulation, none of the round key flip-flops are updated.
Instead, they always remain ‘0’

Based on our observations — depending on the design architecture — the initial KeyAdd operation
is still conducted by the correct round key rkg. More precisely, the manipulated AES core
performs the following operations:

(1) state = p @ rko,
(2) state = MC(SB(SR(state))) & 028, 5 € {1,...,9},
(3) &= SB(SR(state)) ® 0'%8,

Therefore, the hypothesis Hyy (defined in Section 6.4.2) can examine whether a manipulation
hit the corresponding LUT, and consequently recover the key.

"In Xilinx FPGAs the initial value of every flip-flop can be defined. Without any definition, the default value
(usually ‘0’) is taken by the synthesizer.

93

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

Update Mechanism of Flip-flops - Never Update S-box Input Register

We have observed a similar scenario for a 32-bit AES state. As an example, we focus on the
AES design Dy with 32-bit datapath, where updating the complete 128-bit AES states requires
at least four clock cycles. Similar to the prior case, the CE pin of the registers are controlled
by a LUT. If such a LUT is manipulated by R; (Clear LUT), the register will have always its
initial value, cf. Figure 6.9.

—~ O
¢ Fsm ERLUT
I\—____/L/F OO

R;: Clear LUT
AES state 1% column —4—) 0x00 Const = 0x63
y CE g por P2 5B0x 1 -
AES state 2" column —4— Shox Ly ebox 5 ..
AES state 3" column —L I 72 S-box |7~> ++
INIT=0...0 {73 =227 0
AES state 4" column —4—) g 20X 7.
a2 5 Fault impact = 32-bit input always

remains zero (,never update FFs”“), i.e.,
plaintext influence canceled

Figure 6.9: Manipulation rule Ry (Clear LUT), word-based design Dp, due to the bitstream
manipulation the S-box inputs remain zero, this results into the leakage of the last
round key rkqg

It is noteworthy that in this design, the four aforementioned AES S-boxes are used only for
the SubBytes operation, i.e., the key schedule circuitry employs separate S-box instances. Even
though all the main AES operations (ShiftRows, AddRoundkey, MixColumns, etc.) operate
correctly, the round output is not stored into the S-box input registers. Therefore, the ma-
nipulated design outputs é = SB(SR(0'2%)) @ k19 = SB(0'%) & rkyo, which trivially leads to
recovering the last round key rkig, i.e., hypothesis Hs.

These results indeed indicate that preventing registers from updating their state can lead to
various exploitable ciphertexts. However, as expressed above, the feasibility of the key recovery
depends on the initial value of the registers. Hence, if the registers (in HDL representation) are
initialized by arbitrary values, the aforementioned attacks would need to guess the initial value
instead of 0'?8, which obviously complicates the attacks.

Update Mechanism of Flip-flops - Invert Updating

We also observed that the manipulation rule R3 (Invert LUT) resulted in inverting a signal
that controls when the output register (128-bit flip-flops so-called out_reg) should be updated
by trivially being connected to its CE pin. In the underlying AES core, the out_reg is not
updated during the encryption except when the encryption is terminated thereby storing the
ciphertext. To this end, the corresponding LUT output (so-called update_out_reg_enable) is ‘1’
at only one clock cycle, cf. upper part of Figure 6.10.

94

6.6. Analysis

Normal Operation
1
0 LR

state
out_reg e L0 XT0 X € >
update_out_ 1 ,—|
reg_enable 0
update_out_ 1
reg_enable 0 I_r

End of encryption

Figure 6.10: Manipulation rule Rs (Invert LUT), round-based design D4, Due to the LUT
inversion of the update_out_reg_enable control signal, the relevant output register
out_reg is updated at the wrong clock cycles, i.e., the modified AES core fails to
copy the correct ciphertext ¢ and writes the leaking state kajg

By the aforementioned manipulation, the LUT output update_out_reg_enable is inverted, and
the output register out_reg stores the cipher state after KeyAdd operation at all cipher rounds
except the last one. Consequently, the final state after the last KeyAdd operation (kajg) is
given as faulty output instead of the correct ciphertext c. By examining hypothesis Hy it can
be tested whether such a LUT is hit which directly leads to key recovery.

Hitting the State Machine or Round Counter

One of the most common observed exploitable faults was due to manipulation of a LUT that
(partially) processes the state machine or counter signals. As a consequence, in many cases the
manipulated AES core finished its operations earlier than the fault-free case. Such a manipula-
tion leads to the exposure of various intermediate values, e.g., the j* Keyadd operation (kaj).
A representative example is illustrated in Figure 6.11. We have observed that the manipulated

LUT realizes the following function:
final round = rndy - rnd; - rnds - rnds (6.3)

Such a LUT controls the AES core to stop the operations when the round counter reaches
(rnds, rndy, rndy, rndy) = (1,0,1,0) = 104, obviously corresponding to 10 cipher rounds of
AES-128. Inverting certain bits of this LUT’s content, e.g., by rule Rj3, can lead to a decrease
or an increase of the rounds that the AES core processes.

Similarly, if manipulation rule Ry (Set LUT) is applied, the targeted LUT (which, e.g.,
controls the DONE signal) forces the AES core to terminate the operation right after the start,

95

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based

FPGAs and AES
final round
VCC —» —

rnd; —» [T
rndg —> 6-2

rmds3—» LUT

rnd, —>

Figure 6.11: Manipulation rule Rj3 (Invert bits if HW < 15), round-based design Dg, conse-
quence: modification of AES round counter threshold

cf. Figure 6.12. The state machine control flow is therefore affected, and as a consequence an
intermediate state (e.g., p ® rko) is given instead of the ciphertext.

START .
P
gl c=AES,(p)
Ry Set LUT__—~—~
DONE="1' AT
Sample/transfer LuUT s i
¢ if DONE=1* c =1 N
Fault impact DONE="1’ if round cnt= 10
- DONE is always '1’ DONE="0" if round cnt < 10

Figure 6.12: Manipulation rule Ry (Set LUT), round-based design Dy, consequence: the AES
core permanently signalizes DONE=‘1’

Hitting Pass-Through LUT of Countermeasure-Protected AES Core

To our surprise, even our countermeasure-protected AES core of Section 4.5 could be successfully
attacked. Even though it was designed to protect against bitstream manipulations, in this case
the implementation could not prevent the attack. The reason is that the synthesizer placed
and routed one LUT to act as a pass-through element, i.e., it decides which decrypted values
(through a 1-bit data bus) are configured into the actual S-boxes (i.e., cascaded and multiplexed
CFG5 LUTs) of the AES core, cf. the flagged LUT in Fig. 6.13. In this particular case, the
faulted LUT was reprogrammed to always output a logical zero, subsequently leading to zeroed
S-boxes. As explained in Section 4.4.6, such a modified AES core will output the last round
key rkig. For the full work-flow of this countermeasure, the interested reader is referred to
Section 4.5.

6.7 Discussions and Countermeasures

One way to counter BiFI attacks might be to include built-in self tests (BIST) and conventional
fault attack countermeasures such as redundancy and error-detection circuitry. A BIST might

96

6.7. Discussions and Countermeasures

P
| Decrypted S-Boxes k, One AES core Encrypted S-Boxes in Memory
5 =6115.15.2] 8. ‘ ‘ E; ‘
P1=5.|1S:[155118s > Reconfigured &
B=stlisdlls s | AES,;(p) | A |
@ Initial [@
P2 =8°| 861 1S:°]1 S ‘f-.u., = ~] P ‘ < l
| P2=S5 |18 11S711Ss P Pas s P1s €y €3y -y G35 *®

- —————

(3) reconfiguration data

[500 |
Dynamic S-Box reconfiguration

: | CFGLUTS CFGLUTS |: : | CFGLUTS CFGLUTS |: CFGLUTS CFGLUTS |:
. _H-_:_ . 2] . ~ B 3 -
S 5 : S, s : S, S,
CFGLUTS CFGLUTS 5 - CFGLUTS CFGLUTS 5. . CFGLUTS CFGLUTS |:
T "I | el E An : T K E “ T8 .
S, A S - S, S; o S, A S

. 2 v 8 v
o Ik : v)3 : 4 :
: |_CFGLUTS CFGLUTS |; CFGLUTS CFGLUTS |; CFGLUTS CFGLUTS |;
& MHs Ellx S PSR Tx. : 5% HSs k
] X; I X: Xz

Figure 6.13: Manipulation rule Ry (Clear LUT), round-based and countermeasure-protected
design D3, consequence: the 1-bit reconfiguration data bus is constantly set to
“0” leading to a reconfiguration of zeroed truth tables of all dynamic CFG5 LUTs,
which implement all AES S-box instances

prevent any manipulation attempt as conducted in this chapter since it will detect that the
encryption core is not functioning correctly. However, in such a case an attacker could try to
perform a two-step BiFI attack: in the first step, the attacker tries to trigger a BIST failure
by identifying/manipulating a LUT belonging to the AES circuitry. The attacker then tries to
disable the BIST by continuously modifying the bitstream until a faulty ciphertext is returned
instead of the BIST failure. Although we did not verify this practically, the occurrence of a
decision-making LUT, indicating a failure or success of the BIST, is likely. Manipulating such a
LUT to always yield a “success” is then trivial and can be automatized by means of bruteforce.

Having figured out how to disable the BIST, in a second step one can proceed to apply the
BiFI attack. Similar attack strategies might be applicable for other countermeasures. Which
fault attack countermeasures are the most promising defenses against BiF1I is still an open and
interesting research question.

6.7.1 Impact on Other Fault Attack Types

This chapter focused on generating exploitable permanent faults using bitstream manipulation.
However, we would like to highlight that the presented approach to recover an AES key from
permanent faults is not restricted to these attacks. Basically, several other fault techniques can
be used to create similar exploitable faulty ciphertexts. For example, it was shown that laser
fault attacks can also be used to change the configuration of the FPGA, e.g., in [CML"11]
or [TLGT15]. Typically, the goal of most laser fault attacks on FPGA designs is to cause
transient faults in one round of the AES encryption to recover the key using a differential

97

Chapter 6. Bitstream Fault Injections (BiFl) - Automated Fault Attacks Against SRAM-based
FPGAs and AES

fault analysis. Permanent faults are usually not intended and are seen (e.g., in [CMLT11])
mainly as an obstacle from an attacker’s perspective. However, the results in this chapter show
that permanent faults can actually be a very powerful attack vector. The key insight is that
even random configuration errors (rule Ry5) have a high chance to result in exploitable faulty
ciphertexts. Hence, the same attack idea can also be performed with random (or targeted) laser
fault injection. A clock glitch or power glitch during the configuration of the bitstream might
also be used to cause such configuration faults. Therefore, investigating how the BiFI attack
can be extended to other fault techniques or cryptographic algorithms is an interesting future
research direction.

6.8 Conclusion

This chapter introduces a new attack vector against cryptographic implementations on SRAM-
based FPGAs. In this attack — so-called bitstream fault injection (BiFI) — the faults are injected
systematically by configuring the target FPGA with malicious bitstreams. As a key insight of
the BiFI attack, it can be automated so that no reverse-engineering of the target design is
needed. Our attack, which is based on injecting permanent faults, is feasible in many practical
realistic scenarios, where the attacker can manipulate the FPGA configuration and observe the
faulty outputs of the target design. The adversary indeed manipulates the bitstream to alter
and exploit the configuration maliciously.

Our experimental results with 16 AES implementations on a Spartan 6 FPGA showed that 15
out of these 16 designs could be successfully attacked in a few hours on average. The larger the
design is (i.e., the more LUTSs are utilized), the longer the attack takes. We furthermore showed
that such a key recovery is even possible for some FPGAs when the bitstream encryption is
enabled. The time required for the attack (in case of the encrypted bitstream) depends on the
size of the underlying FPGA (more precisely on the number of available LUTSs). It can range
from hours (for low and mid-range FPGAs) up to weeks (for high-range FPGAs, e.g., with a
million LUTSs).

In short, the BiFI attack is non-invasive and requires neither a sophisticated setup nor to de-
velop a complex reverse-engineering framework. Indeed, it can be conducted by engineers with-
out particular expertise. Furthermore, BiFI demonstrated the necessity of finding appropriate
countermeasures that should be researched and included as part of the hardware configuration,
even in cases with an enabled bitstream encryption scheme.

98

Part 111

Conclusion

Chapter 7

Conclusion

In this thesis, we have demonstrated the first practical attacks on third-party hard-
ware configurations, which implement cryptographic algorithms, by directly manip-
ulating the relevant functions through bitstream modification. In the following, we
summarize our findings, draw a conclusion, and outline the directions for future
research.

Contents of this Chapter

7.1 Impact of Bitstream Encryption Vulnerabilities 101
7.2 Impact of Bitstream Manipulations 102
7.3 Future Directions Lo 103

7.1 Impact of Bitstream Encryption Vulnerabilities

The majority of today’s bitstream encryption schemes of Altera and Xilinx FPGAs are vulner-
able to side-channel attacks or no bitstream encryption is offered at all. IP theft and cloning
have been considered as the major drawbacks of insecure bitstream encryption schemes. While
previous research has successfully demonstrated that the Xilinx bitstream file formats can be
almost entirely reverse-engineered, it still remained unclear whether the manipulation of an
unknown third-party bitstream can lead to a security breach. Additionally, it was unknown
whether such an attack could be conducted in a reasonable time span. In this thesis, we proved
that concrete attacks against cryptographic primitives are indeed possible and surprisingly ef-
fective. Hence, the loss of integrity and confidentiality of a third-party bitstream implementing
security-critical functionality is more problematic than commonly assumed. Considering the
fact that billions of SRAM-based FPGAs have been sold and that the lifespan of an FPGA
is approximately 10 to 15 years, we expect that the demonstrated attacks will be relevant for
the next 5 to 10 years. Additionally, once further research proves security vulnerabilities of the
currently deployed side-channel protected bitstream encryption schemes of newer FPGA gen-
erations such as Xilinx’s Ultrascale, the presented bitstream manipulation attacks will become
practically relevant for these newer devices as well.

101

Chapter 7. Conclusion

7.2 Impact of Bitstream Manipulations

One major contribution of this thesis is the practical demonstration of bitstream manipulations
potentially leading to key recovery or Trojan insertion, especially in those cases where a hardware
configuration (implementing block ciphers such as DES and AES) makes use of precomputed
S-box tables. Once all attacker tools are prepared and the targeted bitstream of an embedded
device can be replaced by a malicious one, the actual manipulation can be conducted quickly
utilizing our proposed S-box detection algorithms.

The most remarkable result is that an attacker neither requires any routing information of a
third-party hardware configuration nor does he have to reverse-engineer the entire bitstream file
format or the entire built circuitry, making it a realistic attacker scenario. It was demonstrated
that in most cases for a variety of AES implementations it is sufficient to only obtain the
LUT and BRAM encoding for targeted manipulations. Surprisingly, a considerably weaker
attack model than expected is required to conduct successful practical attacks even though the
underlying hardware configuration is potentially complex and the file formats are proprietary.
Meaningful bitstream manipulations were believed to be too complex and time-consuming,
but they are indeed practical, and constitute a serious threat for many embedded devices.
Therefore, they should be considered by a defender as a potential security issue. The practical
relevance of this attack vector was highlighted by successfully attacking the bitstream of a
Xilinx FPGA which was embedded in a real-world high-security USB flash drive from Kingston
intended to securely encrypt user data. Another remarkable result is the fact that it is not
necessary to develop a complex framework for reverse-engineering hardware circuits, which
requires a considerable amount of development time and assumes a more powerful attacker. To
summarize, the work of this thesis raises awareness for security-related issues arising due to the
specific nature of SRAM-based FPGAs.

Another strength of bitstream manipulation attacks is their non-invasiveness. They may
succeed in situations where side-channel or laser fault injection attacks fail to undermine the
security of an embedded device. Those kind of implementation attacks often require expensive
equipment or expertise, and thus, our proposed attack vector represents an effective alternative.

In this thesis, we proposed a concrete countermeasure to impede targeted bitstream manip-
ulations that otherwise would easily lead to key recovery or Trojan insertion. By introducing
the BiFI attack, we found an even more powerful strategy for recovering cryptographic keys
from AES cores that are executed by Xilinx FPGAs. As a negative result, we observed that our
proposed countermeasure is still vulnerable to key recovery. Therefore, we draw the conclusion
that it is challenging to design appropriate countermeasures at the hardware configuration layer.
BiFT does not need to algorithmically detect any hardware primitives. In addition to that, the
attack is design-independent, as we could also attack AES cores using non-precomputed S-
boxes. We hence conclude that an attacker requires significantly less knowledge for conducting
successful attacks.

Major security concerns result from the synthesizer which is currently not designed for
security-related applications. Our findings indicate that many exploitable hardware structures
are unintentionally inserted by the synthesizer. It is rather difficult to protect a cryptographic
design against all kinds of bitstream manipulations. BiFI also turned out to be surprisingly
powerful in attacking a Xilinx Virtex 5 FPGA with an enabled bitstream encryption scheme.
We expect that many more devices are vulnerable to such attacks.

102

7.3. Future Directions

The main take away message is that SRAM-based FPGAs constitute a risk for security-
related tasks unless secure countermeasures are implemented by the FPGA vendor to provide
the corresponding level of integrity and authenticity.

7.3 Future Directions

There are various potential research directions which should be considered for future work.
Since many unprotected FPGAs are deployed making use of potentially easily exploitable bit-
streams, one interesting research field is to examine which hardware structures describing a
cryptographic circuit are best suited to sufficiently prevent targeted and untargeted malicious
bitstream manipulations.

Finding difficult-to-manipulate hardware structures could therefore be a promising research
field. This should involve classifying exploitable hardware structures that synthesizers uninten-
tionally add to a cryptographic hardware configuration. Knowing which hardware structures are
problematic, a specifically designed synthesizer could try to avoid them or extend them in such
a way that it sufficiently counters malicious hardware configuration manipulations beforehand.
Since FPGAs allow easy replacement of a hardware configuration, many real-world embedded
devices deploying an FPGA would benefit from updating its flawed bitstream by a more secure
variant. This should be considered as raise-the-bar countermeasure.

Evaluating the security of bitstream encryption and authentication of newer FPGA gener-
ations is another desirable research area. Newer FPGA families deploy side-channel resistant
bitstream encryption and authentication schemes, and are currently not vulnerable to the pre-
sented bitstream manipulation attacks. Therefore, those devices are currently considered to be
secure. By demonstrating a security flaw leading to a bitstream encryption or authentication
key leakage, our presented bitstream manipulation attack would become practically relevant for
these devices. This is one reason why we believe that designing a special-purpose synthesizer
for cryptographic functions is an important research field. Besides this, showing weaknesses in
newer bitstream encryption and authentication schemes raises security awareness, i.e., it gives
an idea to what extent FPGAs are suited to securely execute cryptographic functions.

Evaluating alternative hardware configuration manipulation strategies exhibits also a note-
worthy research area. In 2015, Tajik et al. [TLG'15] demonstrated that a given hardware
configuration of an SRAM-based CPLD can be partially altered and controlled after the initial
configuration of the device. The authors carried out a laser fault injection attack resulting in
a permanent change of one LUT, similar to our presented BiFI attack. As we have demon-
strated, this can lead to a key leakage. Even though the laser fault-injection attack was only
demonstrated for CPLDs, it is likely that it can be applied to FPGAs as well. This is because
both technologies work similarly and are based on SRAM cells. Hence, evaluating whether this
kind of attack can be conducted on newer FPGA generations with enabled bitstream encryption
and authentication could again raise security awareness and further highlight the importance
of finding difficult-to-manipulate hardware structures.

103

Part IV

Appendix

[A. 15]

[Aka07]

[ALt08)]

[Alt15]

[BDLO7]

[BKL*07]

[BRPB13]

[BS97]

[BSH12]

[CML*11]

Bibliography

A. C. Aldaya, A. J. C. Sarmiento, S. Sanchez-Solano. AES T-Box tampering attack.
Journal of Cryptographic Engineering, pages 1-18, 2015. 8

Akashi Satoh. Cryptographic Hardware Project: IP Cores, 2007. http://www.aoki.
ecei.tohoku.ac.jp/crypto/web/cores.html. 47

Altera. Stratix III FPGA Development Kit. http://www.altera.com/products/
devkits/altera/kit-siii-host.html, 2008. 22

Altera. ALTERA Annual Report for Form 10-K for 2014. https://www.sec.gov/
Archives/edgar/data/768251/000076825115000008/alteral0k12312014 .htm,
2015. 5,6

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In Advances in Cryptology - EU-
ROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37-51.
Springer, 1997. 78

A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In
Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2007, volume 4727 of Lecture Notes in Computer Science,
pages 450-466. Springer, 2007. 39

Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.
Stealthy Dopant-Level Hardware Trojans. In Cryptographic Hardware and Em-
bedded Systems - CHES 2018 - 15th International Workshop, Santa Barbara, CA,
USA, August 20-23, 2013. Proceedings, pages 197-214, 2013. 62

Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Advances in Cryptology - CRYPTO 97, volume 1294 of Lecture Notes in
Computer Science, pages 513-525. Springer, 1997. 78

F. Benz, A. Seffrin, and S.A. Huss. BIL: A tool-chain for bitstream reverse-
engineering. In Field Programmable Logic and Applications (FPL), pages 735-738.
IEEE, Aug 2012. 7

Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédiere, Florent Valette, and
Marc Renaudin. Glitch and Laser Fault Attacks onto a Secure AES Implementation
on a SRAM-Based FPGA. J. Cryptology, 24(2):247-268, 2011. 97, 98

Bibliography

[Corl2]

[CSPN13]

[CTO05]

[Dri0g]

[DWZZ13]

[EGP+07]

[ET13]

[Fek14]

[GKA*10]

[GLS11]

[Grel4]

[Hem14]

[HLK02]

[HR12]

108

Altera Corporation. Stratix III FPGA: Lowest Power, Highest Performance
65-nm FPGA, 2012. http://www.altera.com/devices/fpga/stratix-fpgas/
stratix-iii/st3-index.jsp. 22

R.S. Chakraborty, I. Saha, A. Palchaudhuri, and G.K. Naik. Hardware Trojan
Insertion by Direct Modification of FPGA Configuration Bitstream. Design Test,
IEEE, 30(2):45-54, April 2013. 8

Hamid Choukri and Michael Tunstall. Round Reduction Using Faults. In Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 13-14, 2005. 78

Saar Drimer. Volatile FPGA design security — a survey (v0.96), April 2008. 8

Zheng Ding, Qiang Wu, Yizhong Zhang, and Linjie Zhu. Deriving an NCD file from
an FPGA bitstream: Methodology, architecture and evaluation. Microprocessors
and Microsystems - Embedded Hardware Design, 37(3):299-312, 2013. 7

Thomas Eisenbarth, Tim Giineysu, Christof Paar, Ahmad-Reza Sadeghi, Dries
Schellekens, and Marko Wolf. Reconfigurable trusted computing in hardware. In
Workshop on Scalable Trusted Computing, STC 2007, pages 15-20. ACM, 2007. 68

LANGER EMV-Technik. Near-field probes. https://www.langer-emv.de/en/
category/near-field-probes/19, 2013. 25

Fekete Balazs. AES encryption all keylength :: Overview, 2014. http://opencores.
org/project,aes_all_keylength. 47

K. Gaj, J. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B.Y. Brewster.
ATHENa - Automated Tool for Hardware EvaluatioN: Toward Fair and Compre-
hensive Benchmarking of Cryptographic Hardware Using FPGAs. In Field Pro-
grammable Logic and Applications (FPL), 2010 International Conference on, pages
414421, Aug 2010. 12

Steve Guccione, Delon Levi, and Prasanna Sundararajan. JBits: Java based inter-
face for reconfigurable computing. In CCS 2011. ACM, 2011. 6

Glenn Greenwald. No Place to Hide: Edward Snowden, the NSA and the Surveil-
lance State. Metropolitan Books, 2014. 61

Hemanth. AFES128 :: Owverview, 2014. http://opencores.org/project,aes_
crypto_core. 47

Edson L. Horta, John W. Lockwood, and Sérgio T. Kofuji. Using PARBIT to Im-
plement Partial Run-Time Reconfigurable Systems, pages 182—191. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002. 6

Hex-Rays. IDA - Interactive DisAssembler, 2012. http://www.hex-rays.com. 66

Bibliography

[HSH09]

[IEE0S]

[Jerll]

[KAOS]

[Kin]

[KKO6]

[LPL*10]

[LSG*10]

[MBKP11]

[MBO™05]

[MC13]

[Mic]

[Mic10]

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. Lest We Remember: Cold-boot Attacks on Encryption Keys. Communica-
tions of the ACM, 52(5):91-98, May 2009. 35

IEEE Std 1619-2007. IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices, 2008. 72

Jerzy Gbur. AES core modules :: Owverview, 2011. http://opencores.org/
project,aes_128_192_256. 47

Bhupathi Kakarlapudi and Nitin Alabur. FPGA Implementations of S-box vs. T-
box iterative architectures of AES, 2008. 69

Kingston Technology. Protect sensitive data with FIPS 140-2 Level 2 validation and
100 per cent privacy. 63, 64

Tim Kerins and Klaus Kursawe. A Cautionary Note on Weak Implementations of
Block Ciphers. In Workshop on Information and System Security, page 12, Antwerp,
BE, 2006. 40, 50, 82

Christopher Lavin, Marc Padilla, Philip Lundrigan, Brent E. Nelson, and Brad L.
Hutchings. Rapid prototyping tools for FPGA designs: RapidSmith. In Proceedings
of the International Conference on Field-Programmable Technology, FPT 2010, 8-10
December 2010, Tsinghua University, Beijing, China, pages 353-356, 2010. 6

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Taka-
hashi, and Kazuo Ohta. Fault Sensitivity Analysis. In Cryptographic Hardware
and Embedded Systems — CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 320-334. Springer, 2010. 78

A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: Extracting keys from Xilinx
Virtex-II FPGAs. In CCS 2011, pages 111-124. ACM, 2011. 5

E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel, G. Vandenbosch,
and I. Verbauwhede. Electromagnetic Analysis Attack on an FPGA Implementa-
tion of an Elliptic Curve Cryptosystem. In FUROCON 2005 - The International
Conference on "Computer as a Tool”, volume 2, pages 1879-1882, Nov 2005. 78

Mini-Circuits. Amplifier Data Sheet. http://www.minicircuits.com/pdfs/
ZFL-1000LN+.pdf, 2013. 25

Rosetta Micro. ENSURING TRUST IN CYBERSPACE. 74

Michael Calvin McCoy. A collection of my practical VHDL and Verilog modules,
2010. https://github.com/abhinav3008/inmcm-hdl/tree/master/AES/Basic_
AES_128_Cipher. 47

109

Bibliography

[MKP12]

[MOPS13]

[Mot13]

[MS16]

[Ngul6]

[NTS99)]

[NISO1a]

[NISO1b)]
[NIS10]

[NKL14]

[Not08]

[NROS]

[NSA9Y]

[PHK17]

110

A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel Attacks Highlight the
Importance of Countermeasures - An Analysis of the Xilinx Virtex-4 and Virtex-5
Bitstream Encryption Mechanism. In CT-RSA 2012, volume 7178 of LNCS, pages
1-18. Springer, February 2012. 5

Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. Side-channel
Attacks on the Bitstream Encryption Mechanism of Altera Stratix II: Facilitating
Black-box Analysis Using Software Reverse-engineering. In ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, pages 91-100. ACM, Febru-
ary 2013. 5, 8, 18, 21, 23, 24, 26, 90

Moti Litochevski and Luo Dongjun. high throughput and low area aes core
Overview, 2013. http://opencores.org/project,aes_highthroughput_
lowarea. 47

A. Moradi and T. Schneider. Improved Side-Channel Analysis Attacks on Xilinx
Bitstream Encryption of 5, 6, and 7 Series. In Workshop on Constructive Side-
Channel Analysis and Secure Design. Springer, 2016. 5

Jean-Francois Nguyen. Analysing the Bitstream of Altera’s MAX-V CPLDs, July
2016. 7

NIST. FIPS-46-3: Data Encryption Standard (DES), 1999. http://csrc.nist.
gov/publications/fips/fips46-3/fips46-3.pdf. 40, 42

NIST. FIPS 197 Advanced Encryption Standard (AES), 2001. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf. 17

NIST. Suite B Cryptography, 2001. 63
NIST. DataTraveler 5000 FIPS 140-2 Level 2 certification, 2010. 63

Karsten Nohl, Sascha Krifller, and Jakob Lell. BadUSB - On accessories that turn
evil. BlackHat, 2014. 62

Jean-Baptiste Note. debit, January 2008. 7

Jean-Baptiste Note and Eric Rannaud. From the bitstream to the netlist. In Pro-
ceedings of the ACM/SIGDA 16th International Symposium on Field Programmable
Gate Arrays, FPGA 2008, Monterey, California, USA, February 24-26, 2008, page
264, 2008. 6

NSA. Round 2 Analysis, 1999. http://csrc.nist.gov/archive/aes/round2/
r2anlsys.htm#NSA. 47

K. Dang Pham, E. Horta, and D. Koch. BITMAN: A Tool and API for FPGA Bit-
stream Manipulations. In Design, Automation Test in Furope Conference Exhibition
(DATE), 2017, pages 894-897, March 2017. 7

Bibliography

PQO3]

[RS02]

[SA02]

[SBMP17]

[SFK*16]

[SFKP15]

[SFP+15]

[SMOP14]

[SNK*13]

[Sny14]

[SPT13]

[SWS*11]

Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD. In Crypto-
graphic Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture
Notes in Computer Scienes, pages 77-88. Springer, 2003. 78

A. K. Raghavan and P. Sutton. JPG - a partial bitstream generation tool to support
partial reconfiguration in virtex FPGAs. In Proceedings 16th International Parallel
and Distributed Processing Symposium, pages 6 pp—, April 2002. 6

Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks.
In Cryptographic Hardware and Embedded Systems — CHES 2002, volume 2523 of
Lecture Notes in Computer Sciene, pages 2—12. Springer, 2002. 78

Pawel Swierczynski, Georg T. Becker, Amir Moradi, and Christof Paar. Bitstream
Fault Injections (BiFI) - Automated Fault Attacks against SRAM-based FPGAs.
IEEE Transactions on Computers, PP(99):1-1, January 2017. 9

Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, Amir Moradi, and Christof Paar.
Interdiction in Practice - Hardware Trojan Against a High-Security USB Flash
Drive. Journal of Cryptographic Engineering, pages 1-13, June 2016. 9

Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA Tro-
jans Through Detecting and Weakening of Cryptographic Primitives. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 34(8):1236—
1249, August 2015. 9

Pawel Swierczynski, Marc Fyrbiak, Christof Paar, Christoph Huriaux, and Rus-
sell Tessier. Protecting against Cryptographic Trojans in FPGAs. In Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual In-
ternational Symposium on, pages 151-154. IEEE, May 2015. 9

Pawel Swierczynski, Amir Moradi, David Oswald, and Christof Paar. Physical
Security Evaluation of the Bitstream Encryption Mechanism of Altera Stratix II
and Stratix III FPGAs. ACM Trans. Reconfigurable Technol. Syst., 7(4):34:1-34:23,
January 2014. 5, 8

Alexander Schlésser, Dmitry Nedospasov, Juliane Kramer, Susanna Orlic, and Jean-
Pierre Seifert. Simple Photonic Emission Analysis of AES. J. Cryptographic Engi-
neering, 3(1):3-15, 2013. 78

Bill Snyder. Snowden: The NSA planted backdoors in Cisco products, 05 2014. 61

SPIEGEL Staff. Inside TAO: Documents Reveal Top NSA Hacking Unit, De-
cember 29 2013. http://www.spiegel.de/international /world /the-nsa-uses-powerful-
toolbox-in-effort-to-spy-on-global-networks-a-940969.html. 62

Neil Steiner, Aaron Wood, Hamid Shojaei, Jacob Couch, Peter Athanas, and
Matthew French. Torc: towards an open-source tool flow. In Proceedings of the
ACM/SIGDA 19th International Symposium on Field Programmable Gate Arrays,

111

Bibliography

[Tarl3]

[TLG*15]

[TMLI11]

[VKS11]

[Wik]

(WL

IXil]

[Xil15]

[ZAT06]

112

FPGA 2011, Monterey, California, USA, February 27, March 1, 2011, pages 41-44,
2011. 7

Tariq Ahmad. fast AES-128 Encryption only cores :: Overview, 2013. http://
opencores.org/project,aes—encryption. 47

S. Tajik, H. Lohrke, F. Ganji, J. P. Seifert, and C. Boit. Laser fault attack on
physically unclonable functions. In 2015 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 85-96, Sept 2015. 97, 103

Steven Trimberger, Jason Moore, and Weiguang Lu. Authenticated encryption for
FPGA bitstreams. In Proceedings of the ACM/SIGDA 19th International Sympo-
sium on Field Programmable Gate Arrays, FPGA ’11, pages 83-86. ACM, 2011.
78

I. Verbauwhede, D. Karaklajic, and J. M. Schmidt. The Fault Attack Jungle - A
Classification Model to Guide You. In Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 3-8. IEEE, 2011. 78

Wikipedia. Pearson correlation coefficient. https://en.wikipedia.org/wiki/
Pearson_correlation_coefficient. 23

Clifford Wolf and Mathias Lasser. Project icestorm. http://www.clifford.at/
icestorm/. 7

Xilinx. Spartan-6 Family FPGAs. http://team358.org/files/programming/
ControlSystem2009-/control_system/FPGA-Spartan3_Spartan6-comparison.
pdf. 14

Xilinx. Xilinx Annual Report for Form 10-K for 2014. https://www.sec.gov/
Archives/edgar/data/743988/000074398815000022/x1nx0328201510k . htm,
2015. 6

D. Ziener, S. Assmus, and J. Teich. Identifying FPGA IP-Cores Based on Lookup
Table Content Analysis. In Field Programmable Logic and Applications, 2006. FPL
"06. International Conference on, pages 1-6, Aug 2006. 6

List of Abbreviations

3DES Triple-DES

AES Advanced Encryption Standard

API Application Programming Interface
ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuit
BiFl Bitstream Fault Injection

BRAM Block Random Access Memory

CLB Configurable Logik Block

CPA Correlation Power Analysis

CPLD Complex Programmable Logic Device
DES Data Encryption Standard

DNF Disjunctive Normal Form

DSO Digital Storage Oscilloscope

DSP Digital Signal Processing

ECC Elliptic Curve Cryptography

EEPROM Electrically Erasable Programmable Read-Only Memory
EM Electro-Magnetic

FF Flip Flop

FPGA Field Programmable Gate Array

HD Hamming Distance

HDL Hardware Description Language
HMAC Hash-based Message Authentication Code
HSM Hardware Security Module

IC Integrated Circuit

I0B Input Output Block

IP Intellectual Property

Abbreviations

IV Initialization Vector

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

LUT Look-Up Table

NSA National Security Agency

OEM Original Equipment Manufacturer

PCB Printed Circuit Board

PC Personal Computer

PUF Physically Unclonable Function

RAM Random Access Memory

SCA Side-Channel Analysis

SHA Secure Hash Algorithm

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

USB Universal Serial Bus

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
XTS XEX Tweakable Block Cipher with Ciphertext Stealing

114

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9
2.10

3.1
3.2
3.3
3.4

3.5

4.1

4.2

4.3
4.4
4.5

List of Figures

Building blocks of Xilink FPGAs 11
Exemplary CLB content 12
Overview of one slice 12
Simplified Spartan 6 FPGA architecture 12
Example for configuring a truth table of one LUT using two different input per-

mutations (x5, x4, T3, T2, 1, To) and (To, Ta, T3, T2, T1, T5) « « « o o o oo o v 13
Simplified design flow of Xilinx FPGAs, which translates a high-level hardware

layout to a low-level hardware configuration 15

Overview of system model. A proprietary bitstream file implements an unknown
circuit (e.g., AES), which configures an FPGA once it is powered-up. After this
phase, a control circuit provides an interface to the encryption application. In
practical applications, the bitstream and FPGA are integrated on the same PCB 16
On the left, a 6-to-1 LUT with 6 input bits and 1 output bit is depicted. The

LUT is a truth table T" with 64 entries that are stored in the bitstream 16
Overview of the AES encryption algorithm, 17
Key schedule of AES-128 17
Device under attack - Official development board containing a Stratix IIT FPGA 22
Observed execution order of the encryption module of Stratix III FPGAs 24
Overview of the function f responsible for updating AES inputs 24

Stratix III FPGA development kit, a) the original FPGA, b) and c) removing
the metal cap of the FPGA, d) the decapsulated FPGA with an EM probe at

the optimal position 25
Correlation coefficient for the HD of the row-wise consecutive ShiftRows bytes
using 365,000 traces measured during one power-up of the Stratix ITT 26

A fully mapped and routed hardware configuration showing a more specific part of
the FPGA grid with occupied hardware resources implementing an AES design. If
the corresponding intermediate file format is given in a practical attack scenario,
the hardware configuration could be viewed with the help of Xilinx’s FPGA
editor. It shows the switch-matrix, routing, and distribution of utilized slices.
Note that such a hardware circuit is encoded by the proprietary bitstream file.

Therefore, an attacker does not possess this representation 30
SP601 evaluation kit featuring a Xilinx Spartan 6 FPGA serving as target device

for our proof-of-concept bitstream manipulation attack 31
Overview of the DES encryption algorithm 41
DES round function f L o 41

Modified DES with canceled f-function 41

List of Figures

116

4.6 Simplified overview of a slice of a Spartan 6 FPGA realizing an 8-input,1-output
Boolean function (256 bits of memory) with four 6-input,l-output LUTs (64 bits
of memory each). Our example implements one S-box output column of AES.
Eight of those instances are needed to implement one AES S-box

4.7 FPGA grid view of a Xilinx Spartan 6 XC6SLX16, where each cell represents
one slice. It shows the results of the proposed 8-input, 8-output S-box detection
algorithm for AES hardware configurations. Any cell containing a number shows
that the " (with ¢ € {0,1,..., 7}) AES S-box output column is implemented
by the corresponding slice, i.e., it is successfully detected. White cells represent
unused slices, whereas gray cells denote the usage of arbitrary combinatorial logic
within one slice, i.e., at least one out of 4 LUTSs is configured

4.8 Key schedule of AES-192

4.9 [Initial LUT with Boolean function finit - - - - - .« . .« o o o o o oo oo

4.10 Reconfigured LUT with Boolean function f

4.11 Dynamic reconfiguration of AES S-boxes using CFGLUTS5 elements

5.1 Interdiction attack conducted by intelligence services
5.2 Epoxy removal of Kingston DT 5000 with screwdriver
5.3 Eavesdropping the bitstream of Kingston DT 5000 with opened case
5.4 Address space layout of the SPT flash
5.5 Overview of revealed circuit of our target device

66

5.6 User authentication (dashed) and user data (solid) dependencies before modification 67

5.7 User authentication (dashed) and data (solid) dependencies after modification . .
5.8 XTS-AES encryption block diagram overview

6.1 Subset of the most commonly used possible slice configurations with focus on
look-up tables

6.2 a) The ratio the number of performed bitstream manipulations over the number
of exploitable faults. b) The average attack time (in hours) until an exploitable
faulty ciphertext is obtained for each of the targeted design (using modification
rules Rl—ng)

6.3 The impact of faulting one ciphertext block in case of CBC decryption

6.4 Virtex 5 (VLX50) bitstreams, left: encryption enabled and CRC off (bs_enc_cre_off),

right: encryption enabled and CRC on (bs-enc_crc_on)

6.5 Spartan 6 (SLX75) bitstreams, left: encryption enabled and CRC off (bs_enc_crec_off),

right: encryption enabled and CRC on (bs_enc_crc_on)
6.6 The decryption in counter mode as it is used for bitstream encryption in Stratix 11
FPGAs. Toggling a single ciphertext bit results in a predictable toggle of a
plaintext bit oL oL
6.7 Manipulation rule Ry (Clear LUT'), round-based design Dy, consequence: plain-
text p (instead of srig) is XORed to the last AES round key rkig
6.8 Manipulation rule Ry (Clear LUT), round-based design Dy5, group of flip-flops
forming a 128-bit round key register (rk;o - rkji127) used for XOR with the
current AES state. Due to the manipulation, none of the round key flip-flops are
updated. Instead, they always remain ‘0".

67
73

90

90

List of Figures

6.9

6.10

6.11

6.12

6.13

Manipulation rule Ry (Clear LUT'), word-based design D1, due to the bitstream
manipulation the S-box inputs remain zero, this results into the leakage of the
last round key 7k1g Lo
Manipulation rule R3 (Invert LUT), round-based design Dy, Due to the LUT
inversion of the update_out_reg_enable control signal, the relevant output register
out_reg is updated at the wrong clock cycles, i.e., the modified AES core fails to
copy the correct ciphertext ¢ and writes the leaking state kaig.
Manipulation rule Ry3 (Invert bits if HW < 15), round-based design Dg, conse-
quence: modification of AES round counter threshold
Manipulation rule Ry (Set LUT), round-based design Dy, consequence: the AES
core permanently signalizes DONE=1".
Manipulation rule Ry (Clear LUT), round-based and countermeasure-protected
design D3, consequence: the 1-bit reconfiguration data bus is constantly set to
“0” leading to a reconfiguration of zeroed truth tables of all dynamic CFG5 LUTs,
which implement all AES S-box instances

117

1.1

2.1

2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

6.1

List of Tables

List of Xilinx FPGA families and Altera FPGA devices, which are vulnera-
ble to side-channel attacks. No side-channel attacks for the UltraSCALE and
UltraSCALE™ family have been reported so far. Note that the Xilinx 7 series
includes the Kintex, Artix, and Virtex families

General shape of a 6-input, 1-output look-up table, e.g., used by Xilinx Spartan 3
FPGAs . . .

General shape of a 4-input, 1-output look-up table, e.g., used by Xilinx Spartan 6
FPGASs . . .

Required differences between Stratix IT and Stratix III FPGAs when performing
reverse-engineering and a side-channel attack,

Generating 65 bitstreams for one LUT
General shape of a 6-input,4-output S-box
Overview of evaluated DES implementations
Overview of evaluated AES implementations
General shape of an 8-input,8-output AES S-box.
Static LUT-based / dynamic DES and AES designs

Identified substitution tables stored in block RAM
Identified self-tests and firmware integrity check

Security header fields

Overview of the experiments with regard to the different modification rules. Each
entry in the table represents the number of times for which applying the manipu-
lation rule R; lead to an exploitable fault for design D;. The last column “d.att.”
(designs attacked) shows the number of different designs D; that could be at-
tacked with the corresponding rule. In the experiment, several modification rules
resulted in an exploitable faulty ciphertext when applied to the same LUT. The
number of LUTs that lead to at least one exploitable faulty ciphertext for at least
one of the manipulation rules Ry — Rq4 is shown in row “Number of vulnerable
LUTs” asareference 0 i i it e e e

List of Tables

120

6.2

6.3

6.4

Overview of the experiments with regard to the different hypotheses. Each entry
in the table represents the number of times a hypotheses H; for each design
D; could be used to recover the key from faulty ciphertexts being the result of
applying the modification rules Ri-Ri5. Some hypotheses (marked by 1) succeed
only for Ri5 while some other hypotheses marked with ¥ could make use of only
R1-Ry4. The last column “d.att.” shows the number of different designs that
could be successfully attacked by the corresponding hypothesis. The last two
rows summarize the number of collected responses (which are equivalent to the
number of times a bitstream manipulation was conducted) and the number of
observed unique faulty ciphertexts
Overview of the BiFI attack on encrypted bitstreams. Two modification rules
R3 and Rg were tested and each table entry represents the number of exploitable
faulty ciphertexts
Overview of the exploitable faulty ciphertexts of the different hypotheses for 13
different designs with enabled bitstream encryption

© 00 O U= W N =

—_
= O

List of Algorithms

Pseudo-code for AES input update function f

LUT encoding extraction for any k-input,l-output Xilinx FPGA with k € {4,6}
BRAM encoding extraction for Xilinxk FPGAs
Computation of m,(+) of the p'® permutation with p € {0,1,...,719}).
Detection of all 8 DES S-boxes being distributed over 32 6-input,l-output LUTs
Detection of AES S-boxes being distributed over 32 6-input,l-output LUTs
Decryption of ciphertexts that were encrypted with S¥(-)
Reconstruction of the full main key of AES-128
Partial key reconstruction of AES-192/256

Computation of key-dependent secrets CK;
Decryption of ciphertexts that were encrypted with manipulated AES-XTS

About the Author

Author information as of July 2018.

Personal Data

Name Pawel Swierczynski

Address
Chair for Embedded Security, ID 2/625
Universitéatsstr. 150
44801 Bochum, Germany

E-Mail pawel.swierczynski@rub.de
Date of birth October 29, 1986

Place of birth Tychy, Poland

Education

01/2013 - 09/2017 Doctoral candidate, Ruhr-Universitit Bochum, Electrical and
Information Engineering.

10/2010 - 01/2013 M.Sc., Ruhr-Universitit Bochum, IT Security /Information Engineering.

10/2007 - 10/2010 B.Sc., Ruhr-Universitit Bochum, IT Security/Information Engineering.

Professional Experience

01/2013 - 09/2017 Research Assistant, Ruhr-Universitit Bochum.
Chair for Embedded Security (EMSEC).

04/2010 - 05/2010 Intern, KPMG, Essen.

Publications and Academic Activities

Peer-Reviewed Journal Papers

m Marc Fyrbiak, Sebastian Wallat, Pawel Swierczynski, Max Hoffmann, Sebastian Hoppach,
Matthias Wilhelm, Tobias Weidlich, Russell Tessier and Christof Paar. HAL - The Missing
Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion.
IEEE Transactions on Dependable and Secure Computing, 2018, to appear.

m Pawel Swierczynski, Georg T. Becker, Amir Moradi, and Christof Paar. Bitstream Fault
Injections (BiFI) - Automated Fault Attacks against SRAM-based FPGAs. IEEE Trans-
actions on Computers, PP(99):1-1, January 2017.

m Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, Amir Moradi, and Christof Paar. In-
terdiction in Practice - Hardware Trojan Against a High-Security USB Flash Drive. Jour-
nal of Cryptographic Engineering, pages 1-13, June 2016.

B Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA Trojans
Through Detecting and Weakening of Cryptographic Primitives. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(8):1236-1249, August
2015.

m Pawel Swierczynski, Amir Moradi, David Oswald, and Christof Paar. Physical Security
Evaluation of the Bitstream Encryption Mechanism of Altera Stratix II and Stratix III
FPGAs. ACM Trans. Reconfigurable Technol. Syst., 7(4):34:1-34:23, January 2014.

Peer-Reviewed Conference Proceeding

m Pawel Swierczynski, Marc Fyrbiak, Christof Paar, Christoph Huriaux, and Russell Tessier.
Protecting against Cryptographic Trojans in FPGAs. In Field-Programmable Custom
Computing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on,
pages 151-154. IEEE, May 2015.

B Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. Side-channel At-
tacks on the Bitstream Encryption Mechanism of Altera Stratix II: Facilitating Black-box
Analysis Using Software Reverse-engineering. In ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 91-100. ACM, February 2013.

Technical Reports

m Marc Fyrbiak, Sebastian Wallat, Pawel Swierczynski, Max Hoffmann, Sebastian Hoppach,
Matthias Wilhelm, Tobias Weidlich, Russell Tessier and Christof Paar. HAL - The Missing

Publications and Academic Activities

Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion.
IACR Cryptology ePrint Archive, 2017:783, 2017.

m Pawel Swierczynski, Georg T. Becker, Amir Moradi, and Christof Paar. Bitstream Fault
Injections (BiFI) - Automated Fault Attacks against SRAM-based FPGAs. TACR Cryp-
tology ePrint Archive, 2016:641, 2016.

B Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, Amir Moradi, and Christof Paar. In-
terdiction in Practice - Hardware Trojan Against a High-Security USB Flash Drive. TACR
Cryptology ePrint Archive, 2015:768, 2015.

B Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA Trojans
Through Detecting and Weakening of Cryptographic Primitives. TACR Cryptology ePrint
Archive, 2014:649, 2014.

Invited Talks

B Side-Channel Attacks on the Bitstream Encryption Mechanism of Altera Stratix II. 11th
CryptArchi Workshop: Cryptographic Architectures Embedded in Reconfigurable Devices,
June 25rd 2013, Fréjus, France.

m SHA-3 - Portierung auf einer ATmegal63 Smartcard. 23th SmartCard Workshop: Febru-
ray 2nd 2013, Darmstadt, Germany.

Research Visits
m University of Massachusetts, Amherst, 09/12/2015 — 10/12/2015.
m University of Massachusetts, Amherst, 03/09/2015 — 04/10/2015.
m University of Massachusetts, Amherst, 06/05/2014 — 07/05/2014.

m University of Massachusetts, Amherst, 10/30/2013 — 11/14/2013.

Awards and Stipends

m CAST-Forderpreis IT-Sicherheit 2013, third price in category master/diploma thesis.

Participation in Selected Conferences, Workshops and Summer
Schools

m FCCM 2015, Vancouver, Canada.

B UbiCrypt Summerschool 2013, Bochum, Germany.
m CRYPTO 2013, Santa Barbara, USA.

m CHES 2013, Santa Barbara, USA.

125
B Smartcard Workshop 2013, Darmstadt, Germany.

Publications and Academic Activities

B CryptArchi Workshop 2013, Fréjus, France.

m FPGA 2013, Monterey, USA.

126

